欢迎访问作物学报,今天是

作物学报

• •    

连作对马铃薯根际土壤线虫群落结构与功能的影响

徐强1,谢奎忠1,2,*,胡新元2,岳云3,董博4,罗爱花2   

  1. 1 甘肃农业大学资源与环境学院, 甘肃兰州730070; 2 甘肃省农业科学院马铃薯研究所, 甘肃兰州730070; 3 甘肃省农业工程技术研究院, 甘肃兰州730030; 4 甘肃省农业科学院旱地农业研究所, 甘肃兰州730070
  • 收稿日期:2025-07-11 修回日期:2025-11-18 接受日期:2025-11-18 网络出版日期:2025-11-24
  • 通讯作者: 谢奎忠 E-mail: xiekz79@163.com
  • 基金资助:
    本研究由甘肃省科技计划项目(25CXNA016),国家自然科学基金项目(31860354),甘肃省青年科技攻关“揭榜挂帅”项目(GQK2024034),甘肃省农业科学院重点研发计划项目(2022GAAS36)和甘肃省农业科学院立项项目(2024MLS06)资助。

Effects of continuous cropping on the structure and function of soil nematode communities in potato

Xu Qiang1,Xie Kui-Zhong1,2,*,Hu Xin-Yuan2,Yue Yun3,Dong Bo4,Luo Ai-Hua2   

  1. 1 College of Resources and Environment, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 2 Potato Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China; 3Gansu Academy of Agricultural Engineering Technology, Lanzhou 730030, Gansu, China; 4 Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2025-07-11 Revised:2025-11-18 Accepted:2025-11-18 Published online:2025-11-24
  • Contact: 谢奎忠 E-mail: xiekz79@163.com
  • Supported by:
    This study was supported by the Gansu Provincial Science and Technology Plan Project (25CXNA016), the National Natural Science Foundation of China (31860354), the Gansu Youth S&T Tackling Key Problems Project (Project-Unveiling and Leader-Appointing Mechanism) (GQK2024034), the Gansu Academy of Agricultural Sciences Key R&D Plan Project (2022GAAS36), and the Gansu Academy of Agricultural Sciences Project (2024MLS06).

摘要: 马铃薯是保障粮食安全的重要作物,但长期连作会导致土壤退化与土传病害加剧,威胁其可持续发展。土壤线虫是土壤健康与食物网动态的关键指标。本研究依托甘肃定西15年马铃薯定位试验,设置151015年连作处理(编号分别为T1T5T10T15),通过高通量测序与土壤理化性质分析,探讨线虫群落结构演替及驱动机制。结果表明,长期连作显著降低土壤pH (T18.28降至T158.14P < 0.05)和有机质含量(T5T15降幅显著),而速效氮、磷、钾累积(T15达峰值,P < 0.05)导致C∶N∶P化学计量失衡。β多样性分析(PCoA)显示,5~10年为群落结构转折期,解释57.06%的变异。食细菌线虫相对丰度由15%增至24%Monhysterida9%增至15% (P < 0.05),标志着食物网从真菌通道细菌通道转变;植物寄生线虫呈先增后降趋势(T5峰值,T10T15显著下降,P < 0.05)。马铃薯经济产量在15年连作后下降39.55%,同时腐烂薯率按重量计激增15.8倍,商品薯率大幅下降。经RDAMantel检验确认,土壤有机质和pH是群落演替的关键驱动因子。本研究提出了连作两阶段演替模型,并指出通过施用高碳有机物料以重建真菌主导的能量通道,是破解连作障碍、实现退化农田生态修复的关键策略。

关键词: 马铃薯, 连作, 土壤线虫群落结构, 群落演替, 食物网

Abstract:

Potato is a vital crop for global food security. However, long-term continuous cropping leads to soil degradation and intensifies soil-borne diseases, posing a significant threat to sustainable production. Soil nematodes are important bioindicators of soil health and food web dynamics. In this study, we investigated nematode community succession and its underlying drivers in a 15-year potato monoculture experiment in Dingxi, Gansu, China. Four continuous cropping durations—1, 5, 10, and 15 years (T1, T5, T10, T15)—were evaluated using high-throughput sequencing and soil physicochemical analysis. Results showed that prolonged continuous cropping significantly reduced soil pH from 8.28 (T1) to 8.14 (T15) (P < 0.05) and decreased soil organic matter content, particularly between T5 and T15. In contrast, available nitrogen, phosphorus, and potassium increased and peaked at T15 (P < 0.05), resulting in a disrupted C∶N∶P stoichiometric balance. Beta-diversity analysis (PCoA) indicated that years 5–10 represent a critical transition period in nematode community structure, explaining 57.06% of the variation. The relative abundance of bacterivorous nematodes increased from 15% (T1) to 24% (T15), with Monhysterida rising from 9% to 15% (P < 0.05), suggesting a shift in the soil food web from a fungal- to a bacterial-dominated energy pathway. Plant-parasitic nematodes followed a nonlinear “rise-then-fall” pattern, peaking at T5 and declining significantly at T10 and T15 (P < 0.05). After fifteen years of continuous cropping, potato economic yield declined by 39.55%, the rot rate by weight increased 15.8-fold, and the proportion of marketable potatoes declined sharply. Redundancy analysis (RDA) and Mantel tests identified soil organic matter and pH as key drivers of nematode community succession. Based on these findings, we propose a two-stage succession model for nematode communities under continuous cropping. We further suggest that applying high-carbon organic amendments to restore fungal-dominated energy channels is a promising strategy to alleviate continuous cropping obstacles and support the ecological restoration of degraded farmland.

Key words: potato, continuous cropping, soil nematode community structure, community succession, food web

[1] Bajaj Y P S. Potato. New York: Springer Science & Business Media, 2013. pp 1–509.
[2] Dolničar P. Importance of potato as a crop and practical approaches to potato breeding. Methods Mol Biol, 2021, 2354: 3–20.
[3] 侯乾, 王万兴, 李广存, 等. 马铃薯连作障碍研究进展. 作物杂志, 2019(6): 1–7.
Hou Q, Wang W X, Li G C, et al. Advances in the research on potato continuous cropping obstacles. Crops, 2019(6): 1–7 (in Chinese with English abstract).
[4] Ma Z M, Guan Z J, Liu Q C, et al. Obstacles in continuous cropping: Mechanisms and control measures//Advances in Agronomy. Amsterdam: Elsevier, 2023. pp 205–256.
[5] Neher D A. Role of nematodes in soil health and their use as indicators. J Nematol, 2001, 33: 161–168.
[6] Bongers T, Ferris H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol, 1999, 14: 224–228.
[7] Yeates G W. Nematodes as soil indicators: functional and biodiversity aspects. Biol Fertil Soils, 2003, 37: 199–210.
[8] 张晓珂, 梁文举, 李琪. 我国土壤线虫生态学研究进展和展望. 生物多样性, 2018, 26: 1060–1073.
Zhang X K, Liang W J, Li Q. Recent progress and future directions of soil nematode ecology in China. Biodivers Sci, 2018, 26: 1060–1073 (in Chinese with English abstract).
[9] 王笃超, 吴景贵, 李建明. 不同有机物料对连作大豆根际土壤线虫的影响. 土壤学报, 2018, 55: 490–502.
Wang D C, Wu J G, Li J M. Effect of organic manure on nematodes in rhizosphere soil of soybean under continuous cropping. Acta Pedol Sin, 2018, 55: 490–502 (in Chinese with English abstract).
[10] 潘凤娟, 韩晓增, 邹文秀, 等. 春大豆长期连作对土壤线虫群落结构和食物网的影响. 大豆科学, 2017, 36: 606–613.
Pan F J, Han X Z, Zou W X. Effect of spring soybean long-term monoculture on soil nematode community structure and food web. Soybean Sci, 2017, 36: 606–613 (in Chinese with English abstract).
[11] 朱新萍, 贾远彬, 陈康怡, 等. 覆膜连作年限对棉田土壤线虫群落结构的影响. 农业环境科学学报, 2025, 44: 2313–2322.
Zhu X P, Jia Y B, Chen K Y, et al. Effects of continuous film mulching years on soil nematode community structure in cotton fields. J Agro-Environ Sci, 2025, 44: 2313–2322 (in Chinese with English abstract).
[12] 陈虹, 杨磊, 张凤华. 新疆长期棉花连作对土壤理化性状与线虫群落的影响. 应用生态学报, 2021, 32: 4263–4271.
Chen H, Yang L, Zhang F H. Effects of continuous cotton monocropping on soil physicochemical properties and nematode community in Xinjiang, China. Chin J Appl Ecol, 2021, 32: 4263–4271 (in Chinese with English abstract).
[13] 卢孟召, 刘梅, 陈光, 等. 灵芝连作对土壤理化性质及线虫群落的影响. 吉林农业大学学报, 2022, 44: 586–594.
Lu M Z, Liu M, Chen G, et al. Effects of Ganoderma lingzhi continuous cropping on soil physicochemical properties and nematode community. J Jilin Agric Univ, 2022, 44: 586–594 (in Chinese with English abstract).
[14] 张雪艳, 张亚萍, 许帆, 等. 不同种植年限黄瓜温室土壤线虫群落结构及多样性的比较. 植物营养与肥料学报, 2017, 23: 696–703.
Zhang X Y, Zhang Y P, Xu F, et al. Comparison of soil nematodes community structure and diversity in cucumber greenhouses in different cultivation years. J Plant Nutr Fert, 2017, 23: 696–703 (in Chinese with English abstract).
[15] 钟爽, 何应对, 韩丽娜, 等. 连作年限对香蕉园土壤线虫群落结构及多样性的影响. 中国生态农业学报, 2012, 20: 604–611.
Zhong S, He Y D, Han L N, et al. Effect of continuous cropping of banana on soil nematode community structure and diversity. Chin J Eco-Agric, 2012, 20: 604–611 (in Chinese with English abstract).
[16] 王明伟, 刘雨迪, 陈小云, 等. 旱地红壤线虫群落对不同耕作年限的响应及指示意义. 土壤学报, 2016, 53: 510–522.
Wang M W, Liu Y D, Chen X Y, et al. Response of soil nematode community to cultivation in upland red soil relative to cultivation history and its signifi cance as indicator. Acta Pedol Sin, 2016, 53: 510–522 (in Chinese with English abstract).
[17] 田建霞, 罗珠珠, 李玲玲, 等. 陇中黄土高原半干旱区不同种植年限紫花苜蓿土壤线虫群落分布特征. 应用生态学报, 2022, 33: 2829–2835.
Tian J X, Luo Z Z, Li L L, et al. Soil nematode community characteristics of alfalfa field with different growing ages in the semi-arid Loess Plateau of Central Gansu, Northwest China. Chin J Appl Ecol, 2022, 33: 2829–2835 (in Chinese with English abstract).
[18] Ambel B N K, Matandog N D A, Sumaya N P D N, et al. Nematode community structure in Musa acuminata Colla (lakatan) farms with continuous cropping system. Pak J Nematol, 2024, 42: 66–80.
[19] Dietrich P, Roeder A, Cesarz S, et al. Nematode communities, plant nutrient economy and life-cycle characteristics jointly determine plant monoculture performance over 12 years. Oikos, 2020, 129: 466–479.
[20] 孙翌昕, 李英滨, 李玉辉, 等. 高通量测序技术在线虫多样性研究中的应用. 生物多样性, 2022, 30(12): 196–206.
Sun Y X, Li Y B, Li Y H, et al. Application of high-throughput sequencing technique in the study of nematode diversity. Biodivers Sci, 2022, 30(12): 196–206 (in Chinese with English abstract).
[21] 谢奎忠, 胡新元, 张彤彤, 等. 不同杀菌剂对旱地连作马铃薯土壤水分效应、微生物和产量的影响. 草业学报, 2019, 28(7): 103–111.
Xie K Z, Hu X Y, Zhang T T, et al. Effects of different soil amendment measures on soil water relations, microbial community structure and yield in potato continuous cropping in dry land. Acta Pratac Sin, 2019, 28(7): 103–111 (in Chinese with English abstract).
[22] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000.
Bao S D. Soil and Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000 (in Chinese).
[23] Ross A, Willson V L. One-way Anova//Basic and Advanced Statistical Tests. Rotterdam: SensePublishers, 2017. pp 21–24.
[24] 要凯, 赵章平, 康益晨, 等. 沟垄覆膜对连作马铃薯土壤酶活性、理化性状及产量的影响. 作物学报, 2019, 45: 1286–1292.
Yao K, Zhao Z P, Kang Y C, et al. Effects of ridge-furrow mulching on soil enzyme activity, physicochemical properties and yield in continuous cropping potato field. Acta Agron Sin, 2019, 45: 1286–1292 (in Chinese with English abstract).
[25] 袁艳娜, 杨雪, 谷世闯, 等. 不同生物有机肥对温室黄瓜连作土壤改良效果研究. 现代园艺, 2024(15): 1–3.
Yuan Y N, Yang X, Gu S C, et al. Effects of different bio-organic fertilizers on soil improvement of cucumber continuous cropping in greenhouse. Contemp Hortic, 2024(15): 1–3 (in Chinese with English abstract).
[26] Pang Z Q, Tayyab M, Kong C B, et al. Continuous sugarcane planting negatively impacts soil microbial community structure, soil fertility, and sugarcane agronomic parameters. Microorganisms, 2021, 9: 2008.
[27] Moore J C, McCann K, de Ruiter P C. Modeling trophic pathways, nutrient cycling, and dynamic stability in soils. Pedobiologia, 2005, 49: 499–510.
[28] Moore J C, De Ruiter P C. Soil food webs in agricultural ecosystems. In: Benckiser G, eds. Microbial Ecology of Sustainable Agroecosystems. Boca Raton: CRC Press, 2012. pp 63–88.
[29] Yeates G W, Bongers T, De Goede R G, et al. Feeding habits in soil nematode families and Genera-an outline for soil ecologists. J Nematol, 1993, 25: 315–331.
[30] Xing Y H, Zhang P L, Zhang W M, et al. Continuous cropping of potato changed the metabolic pathway of root exudates to drive rhizosphere microflora. Front Microbiol, 2023, 14: 1318586.
[31] Yuan Q S, Wang L, Wang H, et al. Pathogen-mediated assembly of plant-beneficial bacteria to alleviate Fusarium wilt in Pseudostellaria heterophylla. Front Microbiol, 2022, 13: 842372.
[32] Ghahremani Z, Escudero N, Saus E, et al. Pochonia chlamydosporia induces plant-dependent systemic resistance to Meloidogyne incognita. Front Plant Sci, 2019, 10: 945.
[33] 王进闯, 王敬国. 大豆连作土壤线虫群落结构的影响. 植物营养与肥料学报, 2015, 21: 1022–1031.
Wang J C, Wang J G. Effects of continuous soybean monoculture on soil nematode community. J Plant Nutr Fert, 2015, 21: 1022–1031 (in Chinese with English abstract).
[34] 高飞, 赵贺, 周峰, 等. 江苏省不同种植年限的西/甜瓜农田土壤线虫群落特征. 生态学杂志, 2020, 39: 155–163.
Gao F, Zhao H, Zhou F, et al. Community characteristics of nematodes in agricultural soil of watermelon and melon with different cultivation years in Jiangsu province. Chin J Ecol, 2020, 39: 155–163 (in Chinese with English abstract).
[35] Chandrashekara C, Bhatt J C, Kumar R, et al. Suppressive soils in plant disease management. In: Singh A, Singh I, Singh A, eds. Eco-friendly Innovative Approaches in Plant Disease Management. New Delhi: International Book Distributing Company, 2012. pp 241–256.
[36] Li X Y, Lewis E E, Liu Q Z, et al. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat. Sci Rep, 2016, 6: 30466.
[37] Hamid M I, Hussain M, Wu Y P, et al. Successive soybean-monoculture cropping assembles rhizosphere microbial communities for the soil suppression of soybean cyst nematode. FEMS Microbiol Ecol, 2017, 93: fiw222.
[38] Xin A Y, Jin H, Yang X Y, et al. Allelochemicals from the rhizosphere soil of potato (Solanum tuberosum L.) and their interactions with the soilborne pathogens. Plants, 2022, 11: 1934.
[39] 梁文举, 姜勇, 李琪, 等. 定位试验地耕层土壤植物寄生线虫空间分布特征. 生态学报, 2006, 26: 33–39.
Liang W J, Jiang Y, Li Q. Spatial distribution characteristics of plant-parasitic nematodes in cultivated horizon of a site-specific experimental field. Acta Ecol Sin, 2006, 26: 33–39 (in Chinese with English abstract).
[40] Zeeshan Ul Haq M, Yu J, Yao G L, et al. A systematic review on the continuous cropping obstacles and control strategies in medicinal plants. Int J Mol Sci, 2023, 24: 12470.
[1] 卓峰琦, 唐振三, 雷雨俊, 程李香, 赵甜甜, 吕汰, 杨晨, 张峰. 基于烹饪方式及回生温度筛选低升糖马铃薯品种(系)[J]. 作物学报, 2025, 51(9): 2538-2546.
[2] 朱锦程, 杨秋华, 程李香, 李文丽, 石明明, 李惠霞, 张峰. 马铃薯抗南方根结线虫种质资源筛选及相关生理反应分析[J]. 作物学报, 2025, 51(9): 2307-2317.
[3] 尹丽娜, 张锐, 陈国欢, 白磊, 李俊, 郭华春, 杨芳. 不同马铃薯品种块茎创伤愈合能力的比较[J]. 作物学报, 2025, 51(9): 2399-2411.
[4] 贾小霞, 齐恩芳, 文国宏, 马胜, 黄伟, 吕和平, 李建武, 曲亚英, 丁宁. 中早熟马铃薯‘陇薯20号’高效再生体系建立及抗草铵膦种质创制[J]. 作物学报, 2025, 51(9): 2285-2294.
[5] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[6] 邵顺伟, 陈卓, 兰振东, 蔡兴奎, 邹华芬, 李晨曦, 唐景华, 朱熙, 张彧, 董建科, 金辉, 宋波涛. 基于BSA-seq技术的块茎芽眼深度QTL定位分析[J]. 作物学报, 2025, 51(7): 1725-1735.
[7] 杨双, 白磊, 郭华春, 缪亚生, 李俊. 马铃薯叶片表皮毛形态特征、类型与发育过程[J]. 作物学报, 2025, 51(6): 1582-1598.
[8] 徐杰, 夏露露, 唐振三, 李文丽, 赵甜甜, 程李香, 张峰. 马铃薯块茎蒸制和烘焙后嗅味品质分析[J]. 作物学报, 2025, 51(5): 1409-1420.
[9] 赵喜娟, 张帆, 刘圣宣, 覃骏, 陈惠兰, 林原, 罗红兵, 刘易, 宋波涛, 胡新喜, 王恩爽. 4种马铃薯内源激素提取方法优化及其在块茎解除休眠过程中的含量分析[J]. 作物学报, 2025, 51(4): 1050-1060.
[10] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[11] 曾豫, 郭华春, 杨勇涛, 王玉龙, 何安乐, 王琼, 白磊, 李俊, 张锐. 马铃薯茎秆、叶片原位降解过程中的微生物群落演化规律[J]. 作物学报, 2025, 51(11): 3038-3051.
[12] 李万, 常紫锐, 卢瑶, 沈日敏, 赵永平, 白小东. 25种不同植物RAV家族的鉴定与马铃薯RAV基因分析[J]. 作物学报, 2025, 51(11): 2944-2957.
[13] 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析[J]. 作物学报, 2025, 51(1): 247-259.
[14] 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309.
[15] 周洪源, 杨慧芹, 罗威, 石振明, 马玲. 马铃薯绿原酸调控因子的筛选与功能鉴定[J]. 作物学报, 2024, 50(7): 1740-1749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!