欢迎访问作物学报,今天是

作物学报

• •    

藜麦RopGEF家族基因的鉴定及表达模式分析

景秀清1,2,3,*,蔡永朵1,邓宁1,赵晓东1,2,翟飞红1,2,曾群4   

  1. 1 太原师范学院生物科学与技术学院, 山西晋中030619; 2 太原师范学院汾河流域地表过程与资源生态安全山西省重点实验室, 山西晋中030619; 3 山西大学生命科学学院, 山西太原030006; 4 山西中医药大学基础医学院, 山西晋中030619
  • 收稿日期:2025-07-22 修回日期:2025-10-30 接受日期:2025-10-30 网络出版日期:2025-11-10
  • 基金资助:
    本研究由山西省基础研究计划(自由探索类)项目(202203021212186), 太原师范学院2024年度研究生教育创新项目(SYYJSYC-2431)和太原师范学院大学生创新创业训练项目(CXCY25104)资助。

Identification and expression pattern analysis of CqRopGEF family genes in Chenopodium quinoa

Jing Xiu-Qing1,2,3,*,Cai Yong-Duo1,Deng Ning1,Zhao Xiao-Dong1,2,Zhai Fei-Hong1,2,Zeng Qun4   

  1. 1 College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, Shanxi, China; 2 Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong 030619, Shanxi, China; 3 College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China; 4 School of Basic Medical, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi, China
  • Received:2025-07-22 Revised:2025-10-30 Accepted:2025-10-30 Published online:2025-11-10
  • Supported by:
    This study was supported by the Fundamental Research Programs of Shanxi Province (202203021212186), the Graduate Education and Innovation Projects of Taiyuan Normal University (SYYJSYC-2431), and the College Student Innovation and Entrepreneurship Training Program of Taiyuan Normal University (CXCY25104).

摘要: ROP鸟嘌呤核苷酸交换因子(Rho-related GTPase of plants guanine nucleotide-exchange factors, RopGEFs)介导的ROP信号转导在植物细胞信号通路中起着关键作用。本研究利用生物信息学分析方法,从藜麦基因组中共鉴定到7RopGEF家族基因(分布6条染色体上)。基于系统进化关系和结构特征,将其与拟南芥、水稻等6种作物的共90RopGEFs分为4个亚家族,其中CqRopGEF5AtRopGEF1OsRopGEF1亲缘关系较近。结构分析显示,同亚家族CqRopGEFs的外显子-内含子分布、蛋白Motifs组成及二级/3D结构均具保守性。实时荧光定量聚合酶链式反应(quantitative real-time polymerase chain reaction, qRT-PCR)结果表明,多数CqRopGEFs在种子萌发期高表达,且幼苗根中表达量高于茎、叶;其表达受外源ABA和非生物胁迫显著诱导,如ABA处理下CqRopGEF2/3/4/7表达先升后降,CqRopGEF7在冷、热胁迫后急剧下调。综上,CqRopGEFs家族结构进化保守,可能参与藜麦的生长发育、ABA信号通路及非生物胁迫响应

关键词: 藜麦, RopGEFs, 系统进化分析, 基因表达, 非生物胁迫

Abstract:

In plants, RopGEF-mediated ROP signaling plays a crucial role in cellular signaling pathways. In this study, seven RopGEF family members were identified in Chenopodium quinoa through bioinformatics analysis and were found to be distributed across six chromosomes. Based on phylogenetic relationships and structural characteristics, 90 RopGEFs from six crop species, including Arabidopsis thaliana and rice, were classified into four subfamilies. Evolutionary analysis revealed that CqRopGEF5 is closely related to AtRopGEF1 and OsRopGEF1. Structural analysis indicated that the exonintron organization, protein motif compositionand secondary and three-dimensional structures of CqRopGEFs are highly conserved. qRT-PCR analysis showed that most CqRopGEFs were highly expressed during seed germination, with expression levels in seedling roots being higher than in stems and leaves. Their expression was significantly induced by exogenous abscisic acid (ABAand abiotic stresses. For instance, the expression of CqRopGEF2, CqRopGEF3, CqRopGEF4, and CqRopGEF7 initially increased and then decreased under ABA treatment, while CqRopGEF7 was strongly downregulated under both cold and heat stress. In conclusion, the CqRopGEF gene family exhibits conserved evolutionary structure and may play important roles in quinoa growth and development, ABA signalingand responses to abiotic stress.

Key words: Chenopodium quinoa, RopGEFs, phylogenetic analysis, gene expression, abiotic stresses

[1] 任贵兴, 叶全宝. 藜麦生产与应用. 北京: 科学出版社, 2013. pp 49–50.
Ren G X, Ye Q B. Quinoa Botany, Production and Uses. Beijing: Science Press, 2013. pp 49–50 (in Chinese with English abstract).

[2] 胡一晨, 赵钢, 秦培友, . 藜麦活性成分研究进展. 作物学报, 2018, 44: 1579–1591.
HU Y C, ZHAO G, QIN P Y, et al. Research Progress on Bioactive Components of Quinoa (Chenopodium quinoa Willd.). The Crop Journal, 2018, 44: 1579–1591 (in Chinese with English abstract).

[3] Nowak V, Du J, Ruth Charrondière U. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem, 2016, 193: 47–54.

[4] 胡一波, 杨修仕, 陆平, . 中国北部藜麦品质性状的多样性和相关性分析. 作物学报, 2017, 43: 464–470.
HU Y B, YANG X S, LU P, et al. Diversity and Correlation of Quality Traits in Quinoa Germplasms from North China. The Crop Journal, 2017, 43: 464–470 (in Chinese with English abstract).

[5] 张体付, 戚维聪, 顾闽峰, . 藜麦EST-SSR的开发及通用性分析. 作物学报, 2016, 42: 492–500.
ZHANG T F, QI W C, GU M F, et al. Exploration and Transferability Evaluation of EST-SSRs in Quinoa. The Crop Journal, 2016, 42: 492–500 (in Chinese with English abstract).

[6] Nandan A, Koirala P, Dutt Tripathi A, et al. Nutritional and functional perspectives of pseudocereals. Food Chem, 2024, 448: 139072.

[7] Kolano B, McCann J, Orzechowska M, et al. Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Mol Phylogenet Evol, 2016, 100: 109–123.

[8] Jarvis D E, Ho Y S, Lightfoot D J, et al. The genome of Chenopodium quinoa. Nature, 2017, 542: 307–312.

[9] Rey E, Maughan P J, Maumus F, et al. A chromosome-scale assembly of the quinoa genome provides insights into the structure and dynamics of its subgenomes. Commun Biol, 2023, 6: 1263.

[10] Jaggi K E, Krak K, Štorchová H, et al. A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium. Plant Genome, 2025, 18: e70010.

[11] Vidhyasekaran P. G-proteins as molecular switches in signal transduction. In: Vidhyasekaran P (ed.). PAMP Signals in Plant Innate Immunity. Dordrecht: Springer Netherlands, 2013: 163205.

[12] Zheng Z L, Yang Z. The Rop GTPase: an emerging signaling switch in plants. Plant Mol Biol, 2000, 44: 1–9.

[13] Berken A, Thomas C, Wittinghofer A. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature, 2005, 436: 1176–1180.

[14] Ren H B, Dang X, Yang Y Q, et al. SPIKE1 activates ROP GTPase to modulate petal growth and shape. Plant Physiol, 2016, 172: 358–371.

[15] Yang Z B, Fu Y. ROP/RAC GTPase signaling. Curr Opin Plant Biol, 2007, 10: 490–494.

[16] Liu Y T, Dong Q K, Kita D, et al. RopGEF1 plays a critical role in polar auxin transport in early development. Plant Physiol, 2017, 175: 157–171.

[17] Li Z X, Liu D. ROPGEF1 and ROPGEF4 are functional regulators of ROP11 GTPase in ABA-mediated stomatal closure in Arabidopsis. FEBS Lett, 2012, 586: 1253–1258.

[18] Gu Y, Li S D, Lord E M, et al. Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. Plant Cell, 2006, 18: 366–381.

[19] Yu Y X, Song J L, Tian X H, et al. Arabidopsis PRK6 interacts specifically with AtRopGEF8/12 and induces depolarized growth of pollen tubes when overexpressed. Sci China Life Sci, 2018, 61: 100–112.

[20] Bouatta A M, Anzenberger F, Riederauer L, et al. Polarized subcellular activation of Rho proteins by specific ROPGEFs drives pollen germination in Arabidopsis thaliana. PLoS Biol, 2025, 23: e3003139.

[21] Kim E J, Park S W, Hong W J, et al. Genome-wide analysis of RopGEF gene family to identify genes contributing to pollen tube growth in rice (Oryza sativa). BMC Plant Biol, 2020, 20: 95.

[22] Huang J Q, Liu H L, Berberich T, et al. Guanine nucleotide exchange factor 7B (RopGEF7B) is involved in floral organ development in Oryza sativa. Rice, 2018, 11: 42.

[23] Liu H K, Li Y J, Wang S J, et al. Kinase partner protein plays a key role in controlling the speed and shape of pollen tube growth in tomato. Plant Physiol, 2020, 184: 1853–1869.

[24] Zhang D, Wengier D, Shuai B, et al. The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol, 2008, 148: 1368–1379.

[25] Wang W, Liu Z, Bao L J, et al. The RopGEF2-ROP7/ROP2 pathway activated by phyB suppresses red light-induced stomatal opening. Plant Physiol, 2017, 174: 717–731.

[26] Denninger P, Reichelt A, Schmidt V A F, et al. Distinct RopGEFs successively drive polarization and outgrowth of root hairs. Curr Biol, 2019, 29: 1854–1865.

[27] Chen M, Liu H L, Kong J X, et al. RopGEF7 regulates PLETHORA-dependent maintenance of the root stem cell niche in Arabidopsis. Plant Cell, 2011, 23: 2880–2894.

[28] Kim E J, Hong W J, Tun W, et al. Interaction of OsRopGEF3 protein with OsRac3 to regulate root hair elongation and reactive oxygen species formation in rice (Oryza sativa). Front Plant Sci, 2021, 12: 661352.

[29] Riely B K, He H B, Venkateshwaran M, et al. Identification of legume RopGEF gene families and characterization of a Medicago truncatula RopGEF mediating polar growth of root hairs. Plant J, 2011, 65: 230–243.

[30] Li Z X, Takahashi Y, Scavo A, et al. Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proc Natl Acad Sci USA, 2018, 115: E4522–E4531.

[31] Zhao S J, Wu Y X, He Y Q, et al. RopGEF2 is involved in ABA-suppression of seed germination and post-germination growth of Arabidopsis. Plant J, 2015, 84: 886–899.

[32] Jing X Q, Li W Q, Zhou M R, et al. Rice carbohydrate-binding malectin-like protein, OsCBM1, contributes to drought-stress tolerance by participating in NADPH oxidase-mediated ROS production. Rice, 2021, 14: 100.

[33] Yoo J H, Park J H, Cho S H, et al. The rice bright green leaf (bgl) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces. Plant Mol Biol, 2011, 77: 631–641.

[34] Zhang M Q, Wu X Y, Chen L H, et al. The RopGEF gene family and their potential roles in responses to abiotic stress in Brassica rapa. Int J Mol Sci, 2024, 25: 3541.

[35] Shin D H, Kim T L, Kwon Y K, et al. Characterization of Arabidopsis RopGEF family genes in response to abiotic stresses. Plant Biotechnol Rep, 2009, 3: 183–190.

[36] 陈阳, 郭占斌, 武悦, . 藜麦CqSAP8基因克隆及其在非生物胁迫下的表达分析. 西北植物学报, 2021, 41: 20142020.
Chen Y, Guo Z B, Wu Y, et al. Cloning and expression analysis of CqSAP8 in Chenopodium quinoa under abiotic stresses. Acta Bot Boreali-Occident Sin, 2021, 4: 20142020 (in Chinese with English abstract).

[37] Zhang Y, McCormick S. A distinct mechanism regulating a pollen-specific GTPase. Proc Natl Acad Sci USA, 2007, 104: 1183011835.

[38] Denninger P. Rho of plants signalling and the activating rop guanine nucleotide exchange factors: specificity in cellular signal transduction in plants. J Exp Bot, 2024, 75: 3685–3699.

[39] Duan Q H, Kita D, Li C, et al. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA, 2010, 107: 17821–17826.

[40] Zhu L, Chu L C, Liang Y, et al. The Arabidopsis CrRLK1L protein kinases BUPS1 and BUPS2 are required for normal growth of pollen tubes in the pistil. Plant J, 2018, 95: 474–486.

[41] Beier M P, Jinno C, Noda N, et al. ABA signaling converts stem cell fate by substantiating a tradeoff between cell polarity, growth and cell cycle progression and abiotic stress responses in the moss Physcomitrium patens. Front Plant Sci, 2023, 14: 1303195.

[42] Chang F, Gu Y, Ma H, et al. AtPRK2 promotes ROP1 activation via RopGEFs in the control of polarized pollen tube growth. Mol Plant, 2013, 6: 1187–1201.

[43] Li Z X, Waadt R, Schroeder J I. Release of GTP exchange factor mediated down-regulation of abscisic acid signal transduction through ABA-induced rapid degradation of RopGEFs. PLoS Biol, 2016, 14: e1002461.

[44] 赵悦, 申加枝, 马媛春, 等. 茶树鸟苷酸交换因子CsRopGEF1CsRopGEF3基因的克隆及表达特性. 植物资源与环境学报, 2018, 27(4): 1–10. 
Zhao Y, Shen J Z, Ma Y C, et al. Cloning and expression properties of CsRopGEFI and CsRopGEF3 genes of guanine nucleotideexchange factor in Camellia sinensis. Plant Resour Environ, 2018, 27(4): 110 (in Chinese with English abstract).

[45] van Zelm E, Zhang Y X, Testerink C. Salt tolerance mechanisms of plants. Annu Rev Plant Biol, 2020, 71: 403–433.

[46] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651–681.

[47] 廖恒毅, 王若霖, 黄进. ROPs: 植物细胞内多种信号通路的分子开关. 中国生物化学与分子生物学报, 2020, 38: 271283.
Lian H Y, Wang R L, Huang J. ROPs: molecular switches of multiple signal pathways in plant cells. Chin J Biochem Mol Biol, 2020, 38: 271283 (in Chinese with English abstract).

[48] Smokvarska M, Francis C, Platre M P, et al. A plasma membrane nanodomain ensures signal specificity during osmotic signaling in plants. Curr Biol, 2020, 30: 4654–4664.

[49] 郭亚如, 陈欣, 黄俊骏. ROP蛋白在植物生长发育及逆境响应中的作用研究进展. 河南农业科学, 2021, 50(11): 15.
Guo Y R, Chen, Huang J J. Research progress on function of ROP protein in plant growth and development and stress response. J Henan Agric Sci, 2021, 50(11): 15 (in Chinese with English abstract).

[50] Fukao T, Bailey-Serres J. Plant responses to hypoxia: is survival a balancing act? Trends Plant Sci, 2004, 9: 449–456.

[1] 闫知兰, 赵芹, 常甜达, 王一鸣, 王碧辉, 王鹏, 黄春国, 张会, 王利祥, 郝晓鹏, 赵波. 豆科作物AOX基因鉴定及其在普通菜豆响应非生物胁迫中的表达模式研究[J]. 作物学报, 2025, 51(7): 1769-1783.
[2] 郭冰, 秦家范, 李娜, 宋梦瑶, 王黎明, 李君霞, 马小倩. 谷子SHMT基因家族全基因组鉴定与表达分析[J]. 作物学报, 2025, 51(3): 586-5897.
[3] 张恒, 冯雅岚, 田文仲, 郭彬彬, 张均, 马超. 小麦TaSnRK基因家族鉴定及在局部根区干旱下的表达分析[J]. 作物学报, 2025, 51(3): 632-649.
[4] 李万, 常紫锐, 卢瑶, 沈日敏, 赵永平, 白小东. 25种不同植物RAV家族的鉴定与马铃薯RAV基因分析[J]. 作物学报, 2025, 51(11): 2944-2957.
[5] 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309.
[6] 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988.
[7] 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156.
[8] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[9] 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466.
[10] 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819.
[11] 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792.
[12] 殷祥贞, 赵健鑫, 郝翠翠, 潘丽娟, 陈娜, 许静, 姜骁, 赵旭红, 王恩琪, 曹欢, 禹山林, 迟晓元. 花生转录因子基因AhWRI1的克隆及表达分析[J]. 作物学报, 2024, 50(12): 3155-3164.
[13] 王子然, 鲁一薇, 杨婧怡, 王成龙, 宋亚萍, 马金虎. 外源水杨酸对镉胁迫下大豆生理特性和抗逆基因表达的影响[J]. 作物学报, 2024, 50(11): 2883-2895.
[14] 孙尚文, 束红梅, 杨长琴, 张国伟, 王晓婧, 孟亚利, 王友华, 刘瑞显. 低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制[J]. 作物学报, 2024, 50(1): 187-198.
[15] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!