• •
景秀清1,2,3,*,蔡永朵1,邓宁1,赵晓东1,2,翟飞红1,2,曾群4
Jing Xiu-Qing1,2,3,*,Cai Yong-Duo1,Deng Ning1,Zhao Xiao-Dong1,2,Zhai Fei-Hong1,2,Zeng Qun4
摘要: ROP鸟嘌呤核苷酸交换因子(Rho-related GTPase of plants guanine nucleotide-exchange factors, RopGEFs)介导的ROP信号转导在植物细胞信号通路中起着关键作用。本研究利用生物信息学分析方法,从藜麦基因组中共鉴定到7个RopGEF家族基因(分布于6条染色体上)。基于系统进化关系和结构特征,将其与拟南芥、水稻等6种作物的共90个RopGEFs分为4个亚家族,其中CqRopGEF5与AtRopGEF1、OsRopGEF1亲缘关系较近。结构分析显示,同亚家族CqRopGEFs的外显子-内含子分布、蛋白Motifs组成及二级/3D结构均具保守性。实时荧光定量聚合酶链式反应(quantitative real-time polymerase chain reaction, qRT-PCR)结果表明,多数CqRopGEFs在种子萌发期高表达,且幼苗根中表达量高于茎、叶;其表达受外源ABA和非生物胁迫显著诱导,如ABA处理下CqRopGEF2/3/4/7表达先升后降,CqRopGEF7在冷、热胁迫后急剧下调。综上,CqRopGEFs家族结构进化保守,可能参与藜麦的生长发育、ABA信号通路及非生物胁迫响应。
|
[1] 任贵兴, 叶全宝. 藜麦生产与应用. 北京: 科学出版社, 2013. pp 49–50.
[2] 胡一晨, 赵钢, 秦培友, 等. 藜麦活性成分研究进展. 作物学报, 2018, 44: 1579–1591. [3] Nowak V, Du J, Ruth Charrondière U. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem, 2016, 193: 47–54.
[4] 胡一波, 杨修仕, 陆平, 等. 中国北部藜麦品质性状的多样性和相关性分析. 作物学报, 2017, 43: 464–470.
[5] 张体付, 戚维聪, 顾闽峰, 等. 藜麦EST-SSR的开发及通用性分析. 作物学报, 2016, 42: 492–500. [6] Nandan A, Koirala P, Dutt Tripathi A, et al. Nutritional and functional perspectives of pseudocereals. Food Chem, 2024, 448: 139072. [7] Kolano B, McCann J, Orzechowska M, et al. Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Mol Phylogenet Evol, 2016, 100: 109–123. [8] Jarvis D E, Ho Y S, Lightfoot D J, et al. The genome of Chenopodium quinoa. Nature, 2017, 542: 307–312. [9] Rey E, Maughan P J, Maumus F, et al. A chromosome-scale assembly of the quinoa genome provides insights into the structure and dynamics of its subgenomes. Commun Biol, 2023, 6: 1263. [10] Jaggi K E, Krak K, Štorchová H, et al. A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium. Plant Genome, 2025, 18: e70010. [11] Vidhyasekaran P. G-proteins as molecular switches in signal transduction. In: Vidhyasekaran P (ed.). PAMP Signals in Plant Innate Immunity. Dordrecht: Springer Netherlands, 2013: 163–205. [12] Zheng Z L, Yang Z. The Rop GTPase: an emerging signaling switch in plants. Plant Mol Biol, 2000, 44: 1–9. [13] Berken A, Thomas C, Wittinghofer A. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature, 2005, 436: 1176–1180. [14] Ren H B, Dang X, Yang Y Q, et al. SPIKE1 activates ROP GTPase to modulate petal growth and shape. Plant Physiol, 2016, 172: 358–371. [15] Yang Z B, Fu Y. ROP/RAC GTPase signaling. Curr Opin Plant Biol, 2007, 10: 490–494. [16] Liu Y T, Dong Q K, Kita D, et al. RopGEF1 plays a critical role in polar auxin transport in early development. Plant Physiol, 2017, 175: 157–171. [17] Li Z X, Liu D. ROPGEF1 and ROPGEF4 are functional regulators of ROP11 GTPase in ABA-mediated stomatal closure in Arabidopsis. FEBS Lett, 2012, 586: 1253–1258. [18] Gu Y, Li S D, Lord E M, et al. Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. Plant Cell, 2006, 18: 366–381. [19] Yu Y X, Song J L, Tian X H, et al. Arabidopsis PRK6 interacts specifically with AtRopGEF8/12 and induces depolarized growth of pollen tubes when overexpressed. Sci China Life Sci, 2018, 61: 100–112. [20] Bouatta A M, Anzenberger F, Riederauer L, et al. Polarized subcellular activation of Rho proteins by specific ROPGEFs drives pollen germination in Arabidopsis thaliana. PLoS Biol, 2025, 23: e3003139. [21] Kim E J, Park S W, Hong W J, et al. Genome-wide analysis of RopGEF gene family to identify genes contributing to pollen tube growth in rice (Oryza sativa). BMC Plant Biol, 2020, 20: 95. [22] Huang J Q, Liu H L, Berberich T, et al. Guanine nucleotide exchange factor 7B (RopGEF7B) is involved in floral organ development in Oryza sativa. Rice, 2018, 11: 42. [23] Liu H K, Li Y J, Wang S J, et al. Kinase partner protein plays a key role in controlling the speed and shape of pollen tube growth in tomato. Plant Physiol, 2020, 184: 1853–1869. [24] Zhang D, Wengier D, Shuai B, et al. The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol, 2008, 148: 1368–1379. [25] Wang W, Liu Z, Bao L J, et al. The RopGEF2-ROP7/ROP2 pathway activated by phyB suppresses red light-induced stomatal opening. Plant Physiol, 2017, 174: 717–731. [26] Denninger P, Reichelt A, Schmidt V A F, et al. Distinct RopGEFs successively drive polarization and outgrowth of root hairs. Curr Biol, 2019, 29: 1854–1865. [27] Chen M, Liu H L, Kong J X, et al. RopGEF7 regulates PLETHORA-dependent maintenance of the root stem cell niche in Arabidopsis. Plant Cell, 2011, 23: 2880–2894. [28] Kim E J, Hong W J, Tun W, et al. Interaction of OsRopGEF3 protein with OsRac3 to regulate root hair elongation and reactive oxygen species formation in rice (Oryza sativa). Front Plant Sci, 2021, 12: 661352. [29] Riely B K, He H B, Venkateshwaran M, et al. Identification of legume RopGEF gene families and characterization of a Medicago truncatula RopGEF mediating polar growth of root hairs. Plant J, 2011, 65: 230–243. [30] Li Z X, Takahashi Y, Scavo A, et al. Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proc Natl Acad Sci USA, 2018, 115: E4522–E4531. [31] Zhao S J, Wu Y X, He Y Q, et al. RopGEF2 is involved in ABA-suppression of seed germination and post-germination growth of Arabidopsis. Plant J, 2015, 84: 886–899. [32] Jing X Q, Li W Q, Zhou M R, et al. Rice carbohydrate-binding malectin-like protein, OsCBM1, contributes to drought-stress tolerance by participating in NADPH oxidase-mediated ROS production. Rice, 2021, 14: 100. [33] Yoo J H, Park J H, Cho S H, et al. The rice bright green leaf (bgl) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces. Plant Mol Biol, 2011, 77: 631–641. [34] Zhang M Q, Wu X Y, Chen L H, et al. The RopGEF gene family and their potential roles in responses to abiotic stress in Brassica rapa. Int J Mol Sci, 2024, 25: 3541. [35] Shin D H, Kim T L, Kwon Y K, et al. Characterization of Arabidopsis RopGEF family genes in response to abiotic stresses. Plant Biotechnol Rep, 2009, 3: 183–190.
[36] 陈阳, 郭占斌, 武悦, 等. 藜麦CqSAP8基因克隆及其在非生物胁迫下的表达分析. 西北植物学报, 2021, 41: 2014–2020. [37] Zhang Y, McCormick S. A distinct mechanism regulating a pollen-specific GTPase. Proc Natl Acad Sci USA, 2007, 104: 11830–11835. [38] Denninger P. Rho of plants signalling and the activating rop guanine nucleotide exchange factors: specificity in cellular signal transduction in plants. J Exp Bot, 2024, 75: 3685–3699. [39] Duan Q H, Kita D, Li C, et al. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA, 2010, 107: 17821–17826. [40] Zhu L, Chu L C, Liang Y, et al. The Arabidopsis CrRLK1L protein kinases BUPS1 and BUPS2 are required for normal growth of pollen tubes in the pistil. Plant J, 2018, 95: 474–486. [41] Beier M P, Jinno C, Noda N, et al. ABA signaling converts stem cell fate by substantiating a tradeoff between cell polarity, growth and cell cycle progression and abiotic stress responses in the moss Physcomitrium patens. Front Plant Sci, 2023, 14: 1303195. [42] Chang F, Gu Y, Ma H, et al. AtPRK2 promotes ROP1 activation via RopGEFs in the control of polarized pollen tube growth. Mol Plant, 2013, 6: 1187–1201. [43] Li Z X, Waadt R, Schroeder J I. Release of GTP exchange factor mediated down-regulation of abscisic acid signal transduction through ABA-induced rapid degradation of RopGEFs. PLoS Biol, 2016, 14: e1002461.
[44] 赵悦, 申加枝, 马媛春, 等. 茶树鸟苷酸交换因子CsRopGEF1和CsRopGEF3基因的克隆及表达特性. 植物资源与环境学报, 2018, 27(4): 1–10. [45] van Zelm E, Zhang Y X, Testerink C. Salt tolerance mechanisms of plants. Annu Rev Plant Biol, 2020, 71: 403–433. [46] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651–681.
[47] 廖恒毅, 王若霖, 黄进. ROPs: 植物细胞内多种信号通路的分子开关. 中国生物化学与分子生物学报, 2020, 38: 271–283. [48] Smokvarska M, Francis C, Platre M P, et al. A plasma membrane nanodomain ensures signal specificity during osmotic signaling in plants. Curr Biol, 2020, 30: 4654–4664.
[49] 郭亚如, 陈欣, 黄俊骏. ROP蛋白在植物生长发育及逆境响应中的作用研究进展. 河南农业科学, 2021, 50(11): 1–5. [50] Fukao T, Bailey-Serres J. Plant responses to hypoxia: is survival a balancing act? Trends Plant Sci, 2004, 9: 449–456. |
| [1] | 闫知兰, 赵芹, 常甜达, 王一鸣, 王碧辉, 王鹏, 黄春国, 张会, 王利祥, 郝晓鹏, 赵波. 豆科作物AOX基因鉴定及其在普通菜豆响应非生物胁迫中的表达模式研究[J]. 作物学报, 2025, 51(7): 1769-1783. |
| [2] | 郭冰, 秦家范, 李娜, 宋梦瑶, 王黎明, 李君霞, 马小倩. 谷子SHMT基因家族全基因组鉴定与表达分析[J]. 作物学报, 2025, 51(3): 586-5897. |
| [3] | 张恒, 冯雅岚, 田文仲, 郭彬彬, 张均, 马超. 小麦TaSnRK基因家族鉴定及在局部根区干旱下的表达分析[J]. 作物学报, 2025, 51(3): 632-649. |
| [4] | 李万, 常紫锐, 卢瑶, 沈日敏, 赵永平, 白小东. 25种不同植物RAV家族的鉴定与马铃薯RAV基因分析[J]. 作物学报, 2025, 51(11): 2944-2957. |
| [5] | 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309. |
| [6] | 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988. |
| [7] | 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156. |
| [8] | 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933. |
| [9] | 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466. |
| [10] | 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819. |
| [11] | 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792. |
| [12] | 殷祥贞, 赵健鑫, 郝翠翠, 潘丽娟, 陈娜, 许静, 姜骁, 赵旭红, 王恩琪, 曹欢, 禹山林, 迟晓元. 花生转录因子基因AhWRI1的克隆及表达分析[J]. 作物学报, 2024, 50(12): 3155-3164. |
| [13] | 王子然, 鲁一薇, 杨婧怡, 王成龙, 宋亚萍, 马金虎. 外源水杨酸对镉胁迫下大豆生理特性和抗逆基因表达的影响[J]. 作物学报, 2024, 50(11): 2883-2895. |
| [14] | 孙尚文, 束红梅, 杨长琴, 张国伟, 王晓婧, 孟亚利, 王友华, 刘瑞显. 低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制[J]. 作物学报, 2024, 50(1): 187-198. |
| [15] | 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411. |
|
||