欢迎访问作物学报,今天是

作物学报

• •    

苎麻BnGCL1基因响应干旱胁迫的功能研究

刘海波,张蕾,王立琦,石晓丽,周文莹,崔国贤*,佘玮*   

  1. 湖南农业大学农学院,湖南长沙410128
  • 收稿日期:2025-03-18 修回日期:2025-10-30 接受日期:2025-10-30 网络出版日期:2025-11-05
  • 通讯作者: 佘玮, E-mail: weishe@hunau.edu.cn; 崔国贤, E-mail: gx-cui@163.com
  • 基金资助:
    本研究由财政部和农业农村部国家现代农业产业技术体系建设专项-麻类产业技术体系(CARS-16-E11)资助。

Functional study of the BnGCL1 gene in ramie (Boehmeria nivea L.) in response to drought stress

Liu Hai-Bo,Zhang Lei,Wang Li-Qi,Shi Xiao-Li,Zhou Wen-Ying,Cui Guo-Xian*,She Wei*#br#

#br#
  

  1. College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2025-03-18 Revised:2025-10-30 Accepted:2025-10-30 Published online:2025-11-05
  • Contact: 佘玮, E-mail: weishe@hunau.edu.cn; 崔国贤, E-mail: gx-cui@163.com
  • Supported by:
    This study was supported by the China Agriculture Research System of MOF and MARA-Bast Fibre Industry Technology System (CARS-16-E11).

摘要: 干旱是影响植物生长发育的主要逆境之一。本研究探讨了苎麻(Boehmeria nivea L.) BnGCL1基因在干旱胁迫响应中的功能机制。结果表明,BnGCL1基因序列最大开放阅读框(ORF)1581 bp,编码526个氨基酸蛋白的等电点为5.79,分子量为59,123.98 Da,脂肪系数为78.78,稳定系数为37.42,属于稳定蛋白。BnGCL1基因在苎麻的根、茎、叶中均有表达,受干旱胁迫诱导表达。在干旱条件下,过表达BnGCL1植株的根长、鲜重、叶绿素a、叶绿素b均显著高于野生型,同时抗氧化酶如APXγ-GCL活性以及渗透调节相关物质如GSSGPro等的代谢水平均发生显著变化。BnGCL1的过表达显著上调AtGST1AtGST11AtNCED3AtWRKY40等干旱应答相关基因的表达水平,表明BnGCL1通过调控抗氧化系统和干旱响应信号通路参与植物的抗旱应答。通过VIGS技术验证了BnGCL1基因的沉默能够降低苎麻的耐旱性,表明其在苎麻干旱响应中的作用。本研究揭示了BnGCL1基因在干旱胁迫中的重要作用,为苎麻的抗旱分子机制研究和抗旱品种培育提供了理论依据。

关键词: 苎麻, BnGCL1, 干旱胁迫, 抗氧化酶, 分子机制

Abstract:

Drought is one of the major environmental stresses that affects plant growth and development. In this study, the functional role of the BnGCL1 gene in the drought stress response of ramie (Boehmeria nivea L.) was investigated. The results showed that the gene contains a maximum open reading frame (ORF) of 1581 bp, encoding a protein of 526 amino acids. The predicted protein has an isoelectric point of 5.79, a molecular weight of 59,123.98 Da, a fat index of 78.78, and an instability index of 37.42, indicating that it is a stable protein. BnGCL1 is expressed in the roots, stems, and leaves of ramie, and its expression is induced by drought stress. Under drought conditions, transgenic plants overexpressing BnGCL1 exhibited significantly greater root length, fresh weight, chlorophyll a, and chlorophyll b contents compared to wild-type plants. In addition, the activities of antioxidant enzymes such as APX and γ-GCL, as well as the levels of osmotic regulators including GSSG and Pro, were significantly altered. Overexpression of BnGCL1 also markedly upregulated the expression of drought-responsive genes, including AtGST1, AtGST11, AtNCED3, and AtWRKY40, suggesting that BnGCL1 enhances drought tolerance by modulating the antioxidant defense system and drought-responsive signaling pathways. Gene silencing experiments using VIGS technology further confirmed that suppression of BnGCL1 reduces drought tolerance in ramie, highlighting its critical role in drought response. This study reveals the important function of BnGCL1 under drought stress and provides a theoretical foundation for elucidating the molecular mechanisms of drought tolerance and for breeding drought-resistant ramie varieties.

Key words: Boehmeria nivea L., BnGCL1, drought stress, antioxidant enzymes, molecular mechanism

[1] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313–324. 

[2] Ma L J, Xing L H, Li Z C, et al. Epigenetic control of plant abiotic stress responses. J Genet Genom, 2025, 52: 129–144. 

[3] Cramer G R, Urano K, Delrot S, et al. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol, 2011, 11: 163. 

[4] Zeid I M, Shedeed Z A. Response of alfalfa to putrescine treatment under drought stress. Biol Plant, 2006, 50: 635–640. 

[5] 张波, 郑长清, 林华如. 干旱胁迫下苎麻种质的抗旱生理与经济性状的研究. 中国麻作, 1997, 19(1): 26–30.
Zhang B, Zheng C Q, Lin H R. Study on drought-resistant physiological and economic characters of ramie germplasm under drought stress. China’s Fiber Crops, 1997, 19(1): 26–30 (in Chinese with English abstract). 

[6] 全芮萍, 王昕慧, 刘婕仪, . 苎麻响应非生物胁迫的生理学研究进展. 中国麻业科学, 2022, 44(3): 183–189.
Quan R P, Wang X H, Liu J Y, et al. Research progress on the physiology of ramie in response to abiotic stress. Plant Fiber Sci China, 2022, 44(3): 183–189 (in Chinese with English abstract).

[7] 熊伟, 汤涤洛, 熊常财, . 山坡地种植苎麻水土保持效果研究. 中国水土保持, 2017, (5): 6366.
Xiong W, Tang D L, Xiong C C, et al. Study on soil and water conservation effect of planting ramie on hillside. Soil Water Conserv China, 2017, (5): 63–66 (in Chinese with English abstract).

[8] Lu S C. Regulation of glutathione synthesis. Mol Aspects Med, 2009, 30: 42–59.

[9] Akram S, Siddiqui M N, Nahid Hussain B M, et al. Exogenous glutathione modulates salinity tolerance of soybean [Glycine max (L.) Merrill] at reproductive stage. J Plant Growth Regul, 2017, 36: 877–888.

[10] Panda D, Mishra S S, Behera P K. Drought tolerance in rice: focus on recent mechanisms and approaches. Rice Sci, 2021, 28: 119–132.

[11] Suliman M S E, Elradi S B M, Zhou G S, et al. Exogenous glutathione protected wheat seedling from high temperature and water deficit damages. Sci Rep, 2024, 14: 5304.

[12] 吴法轩, 李秦, 杨昕, . 红麻HcKAN4基因克隆、表达及在类黄酮合成中的功能. 作物学报, 2024, 50: 645–655.
Wu F X, Li Q, Yang X, et al. Cloning, expression, and function of HcKAN4 gene of kenaf in flavonoid synthesis. Acta Agron Sin, 2024, 50: 645–655 (in Chinese with English abstract).

[13] 冯涛, 王海月. 四种苹果属植物耐旱性比较研究. 湖北农业科学, 2018, 57(11): 59–61.
Feng T, Wang H Y. Comparative analysis on drought tolerance of four Malus species. Hubei Agric Sci, 2018, 57(11): 59–61 (in Chinese with English abstract).

[14] Zimmermann P, Hirsch-Hoffmann M, Hennig L, et al. GENEVESTIGATOR. Arabidopsis Microarray database and analysis toolbox. Plant Physiol, 2004, 136: 2621–2632.

[15] 李泽琴, 李锦涛, 邴杰, . 拟南芥APX家族基因在植物生长发育与非生物逆境胁迫响应中的作用分析. 遗传, 2019, 41: 534–549.
Li Z Q, Li J T, Bing J, et al. The role analysis of APX gene family in the growth and developmental processes and in response to abiotic stresses in Arabidopsis thaliana. Hereditas (Beijing), 2019, 41: 534–549 (in Chinese with English abstract).

[16] 陈琴, 李多露, 高文举, . 陆地棉APX基因家族鉴定及抗旱性分析. 农业生物技术学报, 2021, 29: 1894–1903.
Chen Q, Li D L, Gao W J, et al. Identification and drought resistance analysis of APX gene family in Gossypium hirsutum. J Agric Biotechnol, 2021, 29: 1894–1903 (in Chinese with English abstract).

[17] 王润豪, 于永昂, 胡海燕, . 小麦抗坏血酸过氧化物酶TaAPX基因克隆与表达分析. 华北农学报, 2020, 35(2): 48–56.
Wang R H, Yu Y A, Hu H Y, et al. Molecular cloning and expression pattern of TaAPX, ascorbic acid peroxidase gene in wheat. Acta Agric Boreali-Sin, 2020, 35(2): 48–56 (in Chinese with English abstract).

[18] 董守坤, 马玉玲, 李爽, . 干旱胁迫及复水对大豆抗坏血酸-谷胱甘肽循环的影响. 东北农业大学学报, 2018, 49(1): 10–18.
Dong S K, Ma Y L, Li S, et al. Effect of drought stress and re-watering on ascorbate-glutathionecycle of soybean. J Northeast Agric Univ, 2018, 49(1): 10–18 (in Chinese with English abstract).

[19] 黄国存, 崔四平, 马春红, . 干旱对小麦幼苗SOD活性和CaM水平的影响. 华北农学报, 1995, 10(1): 40–44.
Huang G C, Cui S P, Ma C H, et al. Influence of water stress on SOD activities and calmodulin levels. Acta Agric Boreali-Sin, 1995, 10(1): 40–44 (in Chinese with English abstract).

[20] 马尧, 于漱琦. 水分胁迫下小麦幼苗SOD活性的变化及脂质过氧化作用. 农业与技术, 1998, 18(3): 18–19.
Ma Y, Yu S Q. The change of water stress on SOD active and affect of lipid peroxidation induced in wheat seedling. Agric Technol, 1998, 18(3): 18–19 (in Chinese with English abstract).

[21] 戴高兴, 彭克勤, 萧浪涛, . 聚乙二醇模拟干旱对耐低钾水稻幼苗丙二醛、脯氨酸含量和超氧化物歧化酶活性的影响. 中国水稻科学, 2006, 20: 557–559.
Dai G X, Peng K Q, Xiao L T, et al. Effect of drought stress simulated by PEG on malonaldehyde, proline contents and superoxide dismutase activity in low potassium tolerant rice seedlings. Chin J Rice Sci, 2006, 20: 557–559 (in Chinese with English abstract).

[22] 聂石辉, 齐军仓, 张海禄, . PEG-6000模拟干旱胁迫对大麦幼苗丙二醛含量及保护酶活性的影响. 新疆农业科学, 2011, 48(1): 11–17.
Nie S H, Qi J C, Zhang H L, et al. Effect of drought stress simulated by PEG-6000 on malondialdehyde content and activities of protective enzymes in barley seedlings. Xinjiang Agric Sci, 2011, 48(1): 11–17 (in Chinese with English abstract).

[23] 李雪凝, 董守坤, 刘丽君, . 干旱胁迫对春大豆超氧化物歧化酶活性和丙二醛含量的影响. 中国农学通报, 2016, 32(15): 93–97.
Li X N, Dong S K, Liu L J, et al. Effect of drought stress on SOD activity and MDA content of spring soybean. Chin Agric Sci Bull, 2016, 32(15): 93–97 (in Chinese with English abstract).

[24] Zhang X, Takemiya A, Kinoshita T, et al. Nitric oxide inhibits blue light-specific stomatal opening via abscisic acid signaling pathways in Vicia Guard cells. Plant Cell Physiol, 2007, 48: 715–723.

[25] Wang X Y, Li X M, Zhao W, et al. Current views of drought research: experimental methods, adaptation mechanisms and regulatory strategies. Front Plant Sci, 2024, 15: 1371895.

[26] 王丽媛, 丁国华, 黎莉. 脯氨酸代谢的研究进展. 哈尔滨师范大学自然科学学报, 2010, 26(2): 84–89.
Wang L Y, Ding G H, Li L. Progress in synthesis and metabolism of proline. Nat Sci J Harbin Norm Univ, 2010, 26(2): 84–89 (in Chinese with English abstract).

[27] Delauney A J, Hu C A, Kishor P B, et al. Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J Biol Chem, 1993, 268: 18673–18678.

[28] Ahmed A A M, Roosens N, Dewaele E, et al. Overexpression of a novel feedback-desensitized Δ1-pyrroline-5-carboxylate synthetase increases proline accumulation and confers salt tolerance in transgenic Nicotiana plumbaginifolia. Plant Cell Tissue Organ Cult, 2015, 122: 383–393.

[29] Sengupta D, Ramesh G, Mudalkar S, et al. Molecular cloning and characterization of γ-glutamyl cysteine synthetase (VrγECS) from roots of Vigna radiata (L.) Wilczek under progressive drought stress and recovery. Plant Mol Biol Rep, 2012, 30: 894–903.

[30] 张勇, 张力, 杨佩民, . 刚毛柽柳ThγGCS因克隆及表达分析. 分子植物育种, 2017, 15: 113–120.
Zhang Y, Zhang L, Yang P M, et al. Gene cloning and expression analysis of ThγGCS from Tamarix hispida. Mol Plant Breed, 2017, 15: 113–120 (in Chinese with English abstract).

[31] 张亚鹏. 马铃薯γ-谷氨酸半胱氨酸连接酶基因(StGCL)的克隆和转基因研究. 华南农业大学硕士学位论文, 广东广州, 2018.
Zhang Y P. Cloning and Transgenic Research of γ-glutamate Cysteine Ligase Gene in Potato. MS Thesis of South China Agricultural University, Guangzhou, Guangdong, China, 2018 (in Chinese with English abstract).

[32] Forman H J, Zhang H Q, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med, 2009, 30: 1–12.

[33] Richman P G, Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem, 1975, 250: 1422–1426.

[34] Gupta S C, Goldsbrough P B. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol, 1991, 97: 306–312.

[35] Chen J, Yang L B, Yan X X, et al. Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiol, 2016, 171: 707–719.

[36] Nianiou-Obeidat I, Madesis P, Kissoudis C, et al. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep, 2017, 36: 791–805.

[37] Cummins I, Dixon D P, Freitag-Pohl S, et al. Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab Rev, 2011, 43: 266–280.

[38] Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247–273.

[39] Wani S H, Kumar V, Shriram V, et al. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J, 2016, 4: 162–176.

[40] 车永梅, 孙艳君, 卢松冲, . AtWRKY40参与拟南芥干旱胁迫响应过程. 植物生理学报, 2018, 54: 456–464.
Che Y M, Sun Y J, Lu S C, et al. AtWRKY40 functions in drought stress response in Arabidopsis thaliana. Plant Physiol J, 2018, 54: 456–464 (in Chinese with English abstract).

[41] 王玲娟, 鲁帅, 高聪, . 拟南芥AtGST8的功能及其过表达植株对甲基紫精胁迫的响应. 南通大学学报(自然科学版), 2023, 22(1): 44–53.
Wang L J, Lu S, Gao C, et al. Function of AtGST8 gene and response of its over-expressed plants to MV stress in Arabidopsis thaliana. J Nantong Univ (Nat Sci Edn), 2023, 22(1): 44–53 (in Chinese with English abstract).

[42] Molinari M D C, Fuganti-Pagliarini R, Marin S R R, et al. Overexpression of AtNCED3 gene improved drought tolerance in soybean in greenhouse and field conditions. Genet Mol Biol, 2020, 43: e20190292.

[43] Woo D H, Park H Y, Kang I S, et al. Arabidopsis lenc1 mutant displays reduced ABA accumulation by low AtNCED3 expression under osmotic stress. J Plant Physiol, 2011, 168: 140–147.

[44] Jiang J J, Ma S H, Ye N H, et al. WRKY transcription factors in plant responses to stresses. J Integr Plant Biol, 2017, 59: 86–101.

[45] Chen X J, Li C, Wang H, et al. WRKY transcription factors: evolution, binding, and action. Phytopathol Res, 2019, 1: 13.

[46] 季娜娜, 闵德栋, 邵淑君, . VIGS载体在蔬菜作物中的应用研究进展. 植物生理学报, 2016, 52: 810–816.
Ji N N, Min D D, Shao S J, et al. Progress of research on application of VIGS vectors in vegetables. Plant Physiol J, 2016, 52: 810–816 (in Chinese with English abstract).

[47] 刘俊飞, 杨晓娟, 潘根, . 基于TRV病毒的工业大麻(Cannabis sativa L.)VIGS体系的优化. 中国麻业科学, 2023, 45(5): 197–205.
Liu J F, Yang X J, Pan G, et al. Optimization of hemp (Cannabis sativa L.) VIGS system based on TRV virus. Plant Fiber Sci China, 2023, 45(5): 197–205 (in Chinese with English abstract).

[1] 何鹏旭, 姚立蓉, 陈远玲, 闫妍, 张宏, 汪军成, 李葆春, 杨轲, 司二静, 孟亚雄, 马小乐, 王化俊. 大麦干旱胁迫萌发生理及分子机理的差异性与相关性研究[J]. 作物学报, 2025, 51(9): 2412-2432.
[2] 陆雯佳, 汪军成, 姚立蓉, 张宏, 司二静, 杨轲, 孟亚雄, 李葆春, 马小乐, 王化俊. 大麦PRX基因家族全基因组鉴定及其干旱胁迫下的表达分析[J]. 作物学报, 2025, 51(5): 1198-1214.
[3] 李培华, 李杰, 孟祥宇, 孙玉晨, 冯永佳, 李云丽, 刁邓超, 赵雯, 吴玮, 韩德俊, 张嵩午, 郑炜君. 高温胁迫下冷型小麦的抗逆性评估及其生理响应研究[J]. 作物学报, 2025, 51(4): 1118-1130.
[4] 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887.
[5] 管圣, 廖澳, 王立琦, 李茜, 卢建宁, 荣晶, 崔国贤, 杨瑞芳, 佘玮. 6-BA调控增强苎麻抗旱性的生理机制研究[J]. 作物学报, 2025, 51(3): 823-834.
[6] 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754.
[7] 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666.
[8] 王丽萍, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 西北绿洲灌区玉米叶片衰老特征对不同地膜覆盖利用方式的响应[J]. 作物学报, 2025, 51(1): 233-246.
[9] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[10] 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761.
[11] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583.
[12] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[13] 贺佳奇, 白羿雄, 姚晓华, 姚有华, 安立昆, 王玉琴, 王小萍, 李新, 崔永梅, 吴昆仑. 刈割对青稞恢复特性及籽粒和秸秆产量品质特性的影响[J]. 作物学报, 2024, 50(3): 747-755.
[14] 郑广杰, 叶昌, 徐春梅, 陈松, 褚光, 陈里鹏, 章秀福, 王丹英. 低温胁迫对水稻胚芽中葡萄糖和水分状态的影响及其与种子出苗成活间的关系[J]. 作物学报, 2024, 50(12): 3055-3068.
[15] 康国章, 王永华, 郭天财. 小麦淀粉的理化特性及其合成的分子机制[J]. 作物学报, 2024, 50(11): 2665-2673.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!