欢迎访问作物学报,今天是

作物学报

• •    

大豆GmARA6a的克隆及响应盐胁迫的功能分析

张晴1,杨昱2,郭茜2,岳霈尧2,殷丛丛1,牛景萍3,赵晋忠1,杜维俊2,岳爱琴2,*   

  1. 1 山西农业大学基础部, 山西太谷030801; 2 山西农业大学农学院, 山西太谷030801; 3 山西农业大学生命科学学院, 山西太谷030801
  • 收稿日期:2025-06-24 修回日期:2025-10-30 接受日期:2025-10-30 网络出版日期:2025-11-10
  • 通讯作者: 岳爱琴, E-mail: yueaiqinnd@126.com
  • 基金资助:
    本研究由山西省科技重大专项计划揭榜挂帅项目子课题(202201140601025-3-06), 山西省农业关键核心技术攻关子课题(NYGG27-04-01)、山西农业大学科技创新提升工程项目(CXGC2023004), 山西省现代农业产业技术体系建设项目(2025CYJSTX05-07), 山西农业大学育种工程项目(YZGC096)和山西“1331工程”作物科学一级学科建设项目资助。

Cloning and functional analysis of the soybean GmARA6a gene in response to salt stress

Zhang Qing1,Yang Yu2,Guo Qian2,Yue Pei-Yao2,Yin Cong-Cong1,Niu Jing-Ping3,Zhao Jin-Zhong1,Du Wei-Jun2,Yue Ai-Qin2,*   

  1. 1 College of Basic Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China; 2 College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China; 3 College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2025-06-24 Revised:2025-10-30 Accepted:2025-10-30 Published online:2025-11-10
  • Supported by:
    This study was supported by the Sub-project of the Shanxi Province Science and Technology Major Special Plan Unveiling Project (202201140601025-3-06), Sub-project on Key Core Technology Breakthroughs in Agriculture of Shanxi Province (NYGG27-04-01), Shanxi Agricultural University Scientific and Technological Innovation Enhancement Program (CXGC2023004), the Construction Project of Modern Agricultural Industrial Technology System of Shanxi Province (2025CYJSTX05-07), Breeding Project of Shanxi Agricultural University (YZGC096), and the Shanxi “1331 Project” Crop Science First-Class Discipline Construction Project.

摘要: 囊泡运输在植物响应盐胁迫过程中起关键作用ARA6 (RabF1)通过促进内体与质膜间囊泡介导的物质转运,在调节植物的耐盐能力上发挥积极影响。本研究对大豆GmARA6a基因进行克隆及生物信息学分析;通过BFAWM处理以及与AtARA6共定位探究GmARA6a的亚细胞定位;探究该基因在不同组织及盐胁迫下的表达模式;利用拟南芥ara6突变株、GmARA6a回补株系和过表达株系研究GmARA6a基因在调控植株耐盐性方面的作用。结果表明,大豆中克隆的GmARA6a基因长603 bp,编码200个氨基酸,具有ARA6家族的4段共有序列、1段效应结合区以及N端独特的“MGCXSS”结构域GmARA6a定位于细胞膜以及多囊泡体(MVB)上。在大豆根中GmARA6a被盐胁迫诱导上调表达。盐胁迫下,拟南芥ara6突变株出现盐敏表型;而GmARA6a过表达株系生长良好,抗氧化能力增强,膜损伤、脂质过氧化程度降低,H2O2O2?积累量下降;通过分析相关基因表达水平,表明GmARA6a可能通过SOS信号通路、囊泡运输途径调控植株耐盐性。本研究结果为进一步探究GmARA6a的功能提供参考。

关键词: 大豆, GmARA6a, 亚细胞定位, 盐胁迫, 功能分析

Abstract:

Vesicle trafficking plays a crucial role in plant responses to salt stress. ARA6 (RabF1) positively regulates salt tolerance by mediating vesicle transport between endosomes and the plasma membrane. In this study, GmARA6a was cloned from soybean and analyzed using bioinformatics approaches. Subcellular localization was examined through BFA and WM treatments, as well as colocalization with AtARA6. The expression pattern of GmARA6a was assessed across various tissues and under salt stress conditions. To evaluate its functional role in salt tolerance, we used Arabidopsis ara6 mutants, complemented lines (Com-1, Com-2), and overexpression lines (OE-1, OE-2). The GmARA6a gene, with a full-length coding sequence of 603 bp encoding a 200-amino-acid protein, was successfully cloned. The protein contains four conserved ARA6-family domains, an effector-binding region, and a unique N-terminal “MGCXSS” motif. Subcellular localization analysis revealed that GmARA6a localizes to the plasma membrane and multivesicular bodies (MVBs). Its expression was induced by salt stress, particularly in soybean roots. Under salt stress conditions, Arabidopsis ara6 mutants exhibited a salt-sensitive phenotype compared to wild-type plants, while GmARA6a overexpression lines showed improved growth, enhanced antioxidant enzyme activity, reduced membrane damage and lipid peroxidation, and lower levels of H2O2 and O2? accumulation. Expression analysis of related genes suggested that GmARA6a may contribute to salt tolerance by modulating the SOS signaling pathway and vesicle trafficking. These findings provide new insights into the functional role of GmARA6a in plant salt stress responses.

Key words: soybean, GmARA6a, subcellular localization, salt stress, functional analysis

[1] Qi D H, Lee C F. Influence of soybean biodiesel content on basic properties of biodiesel-diesel blends. J Taiwan Inst Chem E, 2014, 45: 504–507.

[2] Shi D, Hang J Y, Neufeld J, et al. Effects of genotype, environment and their interaction on protein and amino acid contents in soybeans. Plant Sci, 2023, 337: 111891.

[3] Li S Z, Xu L, Li Y T, et al. Advances in salinity tolerance of soybean: molecular mechanism and breeding strategy. Food Energy Secur, 2025, 14: e70073.

[4] 毛韩成. 耐盐大豆根际微生物群落特征及其耐盐效应. 南京农业大学硕士学位论文, 江苏南京, 2023.

Mao H C. Characteristics of Rhizosphere Microbial Community in Salt Tolerant Soybean and Its Salt Tolerance Effect. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2023 (in Chinese with English abstract).

[5] Yu Z P, Duan X B, Luo L, et al. How plant hormones mediate salt stress responses. Trends Plant Sci, 2020, 25: 1117–1130.

[6] Quan R D, Lin H X, Mendoza I, et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 19: 1415–1431.

[7] Park H J, Kim W Y, Yun D J. A role for GIGANTEA: Keeping the balance between flowering and salinity stress tolerance. Plant Signal Behav, 2013, 8: e24820.

[8] Zhao S S, Zhang Q K, Liu M Y, et al. Regulation of plant responses to salt stress. Int J Mol Sci, 2021, 22: 4609.

[9] Park H J, Kim W Y, Yun D J. A new insight of salt stress signaling in plant. Mol Cells, 2016, 39: 447–459.

[10] van Zelm E, Zhang Y X, Testerink C. Salt tolerance mechanisms of plants. Annu Rev Plant Biol, 2020, 71: 403–433.

[11] Wang K K, Zhu J, Xu X W, et al. Quantitative monitoring of salt stress in rice with solar-induced chlorophyll fluorescence. Eur J Agron, 2023, 150: 126954.

[12] Ismail A, Takeda S, Nick P. Life and death under salt stress: same players, different timing? J Exp Bot, 2014, 65: 2963–2979.

[13] Yamada N, Takahashi H, Kitou K, et al. Suppressed expression of choline monooxygenase in sugar beet on the accumulation of Glycine betaine. Plant Physiol Biochem, 2015, 96: 217–221.

[14] Ren X L, Qi G N, Feng H Q, et al. Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis. Plant J, 2013, 74: 258–266.

[15] Nieves-Cordones M, Alemán F, Martínez V, et al. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J Plant Physiol, 2014, 171: 688–695.

[16] Xu J, Li H D, Chen L Q, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125: 1347–1360.

[17] Sánchez-Barrena M J, Chaves-Sanjuan A, Raddatz N, et al. Recognition and activation of the plant AKT1 potassium channel by the kinase CIPK23. Plant Physiol, 2020, 182: 2143–2153.

[18] Echeverría E. Vesicle-mediated solute transport between the vacuole and the plasma membrane. Plant Physiol, 2000, 123: 1217–1226.

[19] Van Damme D, Inzé D, Russinova E. Vesicle trafficking during somatic cytokinesis. Plant Physiol, 2008, 147: 1544–1552.

[20] Ebine K, Miyakawa N, Fujimoto M, et al. Endosomal trafficking pathway regulated by ARA6, a RAB5 GTPase unique to plants. Small GTPases, 2012, 3: 23–27.

[21] Ebine K, Fujimoto M, Okatani Y, et al. A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol, 2011, 13: 853–859.

[22] Ito E, Ebine K, Choi S W, et al. Integration of two RAB5 groups during endosomal transport in plants. eLife, 2018, 7: e34064.

[23] Sunada M, Goh T, Ueda T, et al. Functional analyses of the plant-specific C-terminal region of VPS9a: the activating factor for RAB5 in Arabidopsis thaliana. J Plant Res, 2016, 129: 93–102.

[24] Ueda T, Yamaguchi M, Uchimiya H, et al. Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J, 2001, 20: 4730–4741.

[25] Hoepflinger M C, Geretschlaeger A, Sommer A, et al. Molecular and biochemical analysis of the first ARA6 homologue, a RAB5 GTPase, from green algae. J Exp Bot, 2013, 64: 5553–5568.

[26] Bottanelli F, Gershlick D C, Denecke J. Evidence for sequential action of Rab5 and Rab7 GTPases in prevacuolar organelle partitioning. Traffic, 2012, 13: 338–354.

[27] Ito E, Uemura T. RAB GTPases and SNAREs at the trans-Golgi network in plants. J Plant Res, 2022, 135: 389–403.

[28] 田再民. 马铃薯小G蛋白基因StRab5b的克隆及其调控晚疫病抗性的功能研究. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2020.
Tian Z M. Cloning and Functional Analysis of Small G Protein Gene StRab5b Regulation Potato Resistance Against Late Blight. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2020 (in Chinese with English abstract).

[29] Hong Z P, Li Y, Zhao Y, et al. Heterologous expression of Arabidopsis AtARA6 in soybean enhances salt tolerance. Front Genet, 2022, 13: 849357.

[30] Huang Y P, Hou P Y, Chen I H, et al. Dissecting the role of a plant-specific Rab5 small GTPase NbRabF1 in Bamboo mosaic virus infection. J Exp Bot, 2020, 71: 6932–6944.

[31] Kesawat M S, Satheesh N, Kherawat B S, et al. Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signaling molecules-current perspectives and future directions. Plants, 2023, 12: 864.

[32] Ishitani M, Liu J, Halfter U, et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell, 2000, 12: 1667–1678.

[33] Nadarajah K K. ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci, 2020, 21: 5208.

[34] Shen Y, Shen L K, Shen Z X, et al. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ, 2015, 38: 2766–2779.

[35] Liu G Y, Zeng Y L, Li B Y, et al. SOS2 phosphorylates FREE1 to regulate multi-vesicular body trafficking and vacuolar dynamics under salt stress. Plant Cell, 37, 3, koaf012.

[1] 王克晶, 李向华. 我国珍稀的大豆属多年生烟豆和短绒野大豆物种遗传资源濒危性评估分析[J]. 作物学报, 2025, 51(8): 2009-2019.
[2] 孟然, 李赵嘉, 冯薇, 陈悦, 刘路平, 杨春燕, 鲁雪林, 王秀萍. 大豆不同生育时期耐盐性综合评价及耐盐种质筛选[J]. 作物学报, 2025, 51(8): 1991-2008.
[3] 贺红利, 张雨涵, 杨静, 程云清, 赵杨, 李星诺, 司洪亮, 张兴政, 杨向东. 大豆e1-as基因突变体的创制及生理分析[J]. 作物学报, 2025, 51(8): 2228-2239.
[4] 胡蒙, 沙丹, 张晟瑞, 谷勇哲, 张世碧, 李静, 孙君明, 邱丽娟, 李斌. 大豆分枝数QTL定位及候选基因筛选[J]. 作物学报, 2025, 51(7): 1747-1756.
[5] 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568.
[6] 殷丛丛, 李睿琦, 岳霈尧, 李晨, 牛景萍, 赵晋忠, 杜维俊, 岳爱琴. 基于闭合哑铃介导等温扩增可视化检测大豆花叶病毒SC15方法的建立及应用[J]. 作物学报, 2025, 51(5): 1248-1260.
[7] 李雪婷, 任昊, 王洪章, 张吉旺, 赵斌, 任佰朝, 刘莹, 姚海燕, 刘鹏. 盐胁迫对不同耐盐型玉米品种叶片光合性能和干物质积累与分配的影响[J]. 作物学报, 2025, 51(4): 1091-1101.
[8] 潘炬忠, 韦萍, 朱德平, 邵胜雪, 陈珊珊, 韦雅倩, 高维维. 水稻转录因子OsERF104的克隆和功能研究[J]. 作物学报, 2025, 51(4): 900-913.
[9] 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666.
[10] 林洋, 史晓蕾, 陈强, 刘兵强, 杨庆, 于慧娟, 闫龙, 武小霞, 杨春燕. 大豆蛋白质脂肪及脂肪酸组分相关QTL定位[J]. 作物学报, 2025, 51(11): 2899-2910.
[11] 王浩辰, 王克晶, 韩娟, 李向华. 东南沿海短绒野大豆两种代表性生境自然种群的空间遗传结构特征:种群内取样策略研究[J]. 作物学报, 2025, 51(11): 2875-2885.
[12] 张顺杰, 吴维泰, 冉禧玥, 赵梓含, 韩永辉, 吴正丹, 张凯. 甘薯β淀粉酶基因IbBAM48829的功能解析[J]. 作物学报, 2025, 51(11): 3096-3104.
[13] 李威, 朱玉鹏, 孙宾成, 温有祥, 吴宗声, 徐一帆, 宋雯雯, 徐彩龙, 吴存祥. 转基因大豆结合免耕平作实现东北地区大豆生产轻简化[J]. 作物学报, 2025, 51(10): 2738-2749.
[14] 陈敏, 贾蓉, 张金传, 张辰煜, 褚俊聪, 姚伟, 葛军勇, 王星宇, 杨亚东, 曾昭海, 臧华栋. 半干旱区燕麦与豆科作物带状复合种植的产量优势及氮素利用特征研究[J]. 作物学报, 2025, 51(10): 2727-2737.
[15] 钱玉平, 宿兵兵, 高吉星, 阮粉花, 李亚伟, 茅林春. 玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响[J]. 作物学报, 2025, 51(1): 273-284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!