• •
林洋1,2,**,史晓蕾2,**,陈强2,刘兵强2,杨庆2,于慧娟1,2,闫龙2,武小霞1,*,杨春燕2,*
LIN Yang1,2,**,SHI Xiao-Lei2,**,CHEN Qiang2,LIU Bing-Qiang2,YANG Qing2,YU Hui-Juan1,2,YAN Long2, WU Xiao-Xia1,*,YANG Chun-Yan2,*
摘要:
大豆是重要的粮油作物,可为人类提供必需蛋白质和脂肪等营养物质。本研究以河北省农林科学院粮油作物研究所构建的“冀豆17×冀豆12” RIL群体为材料,利用已构建遗传图谱,通过QTL IciMapping 4.1软件,对3个环境中的大豆蛋白质、脂肪含量以及5种脂肪酸组分进行QTL定位。分别定位到7个、7个、45个与蛋白质、脂肪、5种脂肪酸组分相关的QTL。这些位点分别分布在除1、7、16号染色体以外的17条染色体上。其中1个与蛋白质含量相关的QTL,2个与脂肪含量相关的QTL和9个与脂肪酸含量相关的QTL在多个环境中被重复检测到。首次检测到2个与棕榈酸含量有关的QTL位点,1个与亚麻酸含量有关的QTL位点。这些稳定的主效位点对于分子标记辅助大豆品质改良具有重要意义。
[1] 唐芳, 王亚文, 杜丽娟, 高佳荷, 曾媛韬. 30份大豆品种在内蒙古乌兰察布地区引种试验初报. 草原与草业, 2023, 35(3): 7–14. [2] Kudełka W, Kowalska M, Popis M. Quality of soybean products in terms of essential amino acids composition. Molecules, 2021, 26: 5071. [3] Dhakal K H, Jung K H, Chae J H, Shannon J G, Lee J D. Variation of unsaturated fatty acids in soybean sprout of high oleic acid accessions. Food Chem, 2014, 164: 70–73.
[4] 庄无忌, 韩华琼, 谢发明, 张乔, 李福山, 舒世珍, 常汝镇. 栽培、野生、半野生大豆脂肪酸组成的初步分析研究. 大豆科学, 1984, 3: 223–230.
[5] 王亚萍 ,姚小华, 曹永庆, 常君, 任华东, 张成才, 王开良. 6种植物油料油脂的品质及氧化稳定性研究. 中国油脂, 2024, 49(9): 50–58.
[6] 宋晓昆, 张颖君, 闫龙, 杨春燕, 郑艳艳, 蒋春志, 荆慧贤, 张孟臣, 黄占景. 大豆脂肪酸组份相关、变异特点分析. 华北农学报, 2010, 25(增刊2): 68–73. [7] Mensink R P, Temme E H M, Hornstra G. Dietary saturated and trans fatty acids and lipoprotein metabolism. Ann Med, 1994, 26: 461–464.
[8] 王新风, 汪辉, 陈健, 王跃强. 大豆母性影响遗传分析与研究进展. 大豆科技, 2023, (3): 43–47. [9] Chen Q S, Zhang Z C, Liu C Y, Xin D W, Qiu H M, Shan D P, Shan C Y, Hu G H. QTL analysis of major agronomic traits in soybean. Agric Sci China, 2007, 6: 399–405. [10] Liu J Q, Jiang A H, Ma R H, Gao W R, Tan P T, Li X, Zhang J J. Du C Z, Zhang J J, Zhang X C, Zhang L, et al. QTL mapping for seed quality traits under multiple environments in soybean (Glycine max L.). Agronomy, 2023, 13: 2382. [11] Zhong Y W, Li X G, Wang S S, Li S S, Zeng Y H, Cheng Y B, Ma Q B, Wang Y Y, Pang Y T, Nian H, et al. Mapping and identification of QTLs for seed fatty acids in soybean (Glycine max L.). J Integr Agric, 2024, 23: 3966–3982. [12] Akond M, Yuan J Z, Liu S M, Kantartzi S K, Meksem K, Bellaloui N, Lightfoot D A, Kassem M A. Detection of QTL underlying seed quality components in soybean [Glycine max (L.) Merr. Can J Plant Sci, 2018, 98: 881–888. [13] Silva L C C, da Matta L B, Pereira G R, Bueno R D, Piovesan N D, Cardinal A J, God P I V G, Ribeiro C, Dal-Bianco M. Association studies and QTL mapping for soybean oil content and composition. Euphytica, 2021, 217: 24. [14] Yao Y J, You Q B, Duan G Z, Ren J J, Chu S S, Zhao J Q, Li X, Zhou X N, Jiao Y Q. Quantitative trait loci analysis of seed oil content and composition of wild and cultivated soybean. BMC Plant Biol, 2020, 20: 51. [15] Chen Q, Liu B Q, Ai L J, Yan L, Lin J, Shi X L, Zhao H T, Wei Y, Feng Y, Liu C J, et al. QTL and candidate genes for heterophylly in soybean based on two populations of recombinant inbred lines. Front Plant Sci, 2022, 13: 961619.
[16] 渠可心, 韩露, 谢建国, 潘文婧, 张泽鑫, 辛大伟, 刘春燕, 陈庆山, 齐照明. 基于RIL和CSSL群体定位大豆脂肪酸组分QTL. 中国农业科学, 2021, 54: 3168–3182.
[17] 王茜, 刘兵强, 贾馨元, 杨庆, 黄冀楠, 史晓蕾, 杨春燕, 陈庆山. RIL群体中大豆籽粒脂肪酸组分QTL分析. 大豆科学, 2023, 42: 416–423.
[18] 闫龙, 蒋春志, 于向鸿, 杨春燕, 张孟臣. 大豆粗蛋白、粗脂肪含量近红外检测模型建立及可靠性分析. 大豆科学, 2008, 27: 833–837. [19] Yang Q, Lin G M, Lyu H Y, Wang C H, Yang Y Q, Liao H. Environmental and genetic regulation of plant height in soybean. BMC Plant Biol, 2021, 21: 63. [20] McCouch S R, Chen X, Panaud O, Temnykh S, Xu Y, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35: 89–99. [21] Mao T T, Jiang Z F, Han Y P, Teng W L, Zhao X, Li W B. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed, 2013, 132: 630–641. [22] Reinprecht Y, Poysa V W, Yu K F, Rajcan I, Ablett G R, Pauls K P. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome, 2006, 49: 1510–1527. [23] Diers B W, Keim P, Fehr W R, Shoemaker R C. RFLP analysis of soybean seed protein and oil content. Theor Appl Genet, 1992, 83: 608–612. [24] Panthee D R, Pantalone V R, Saxton A M. Modifier QTL for fatty acid composition in soybean oil. Euphytica, 2006, 152: 67–73. [25] Li H W, Zhao T J, Wang Y F, Yu D Y, Chen S Y, Zhou R B, Gai J Y. Genetic structure composed of additive QTL, epistatic QTL pairs and collective unmapped minor QTL conferring oil content and fatty acid components of soybeans. Euphytica, 2011, 182: 117–132. [26] Hyten D L, Pantalone V R, Saxton A M, Schmidt M E, Sams C E. Molecular mapping and identification of soybean fatty acid modifier quantitative trait loci. J Americ Oil Chem Soc, 2004, 81: 1115–1118. [27] Shibata M, Takayama K, Ujiie A, Yamada T, Abe J, Kitamura K. Genetic relationship between lipid content and linolenic acid concentration in soybean seeds. Breed Sci, 2008, 58: 361–366. [28] Bachlava E., Dewey R E, Burton J W, Cardinal A J. Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci, 2009, 49: 433–442. [29] Guyomarc’h S, Boutté Y, Laplaze L. AP2/ERF transcription factors orchestrate very long chain fatty acid biosynthesis during Arabidopsis lateral root development. Mol Plant, 2021, 14: 205–207. [30] Todd J, Post-Beittenmiller D, Jaworski J G. KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J, 1999, 17: 119–130. [31] Huang H D, Yang X P, Zheng M L, Chen Z X, Yang Z, Wu P, Jenks M A, Wang G C, Feng T, Liu L, et al. An ancestral role for 3-KETOACYL-COA SYNTHASE3 as a negative regulator of plant cuticular wax synthesis. Plant Cell, 2023, 35: 2251–2270. [32] Raffaele S, Vailleau F, Léger A, Joubès J, Miersch O, Huard C, Blée E, Mongrand S, Domergue F, Roby D. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell, 2008, 20: 752–767. [33] Wang X Y, Li Q Y, Zhang Q, Huang S Y, Yu J Y, Qin H T, Qi H D, Li Y L, Li Y Y, Yin Z G, et al. Identification of soybean genes related to fatty acid content based on a soybean genome collinearity analysis. Plant Breed, 2019, 138: 696–707. [34] Baud S, Guyon V, Kronenberger J, Wuillème S, Miquel M, Lepiniec L, Rochat C. Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant J, 2003, 33: 75–86. |
[1] | 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127. |
[2] | 王克晶, 李向华. 我国珍稀的大豆属多年生烟豆和短绒野大豆物种遗传资源濒危性评估分析[J]. 作物学报, 2025, 51(8): 2009-2019. |
[3] | 孟然, 李赵嘉, 冯薇, 陈悦, 刘路平, 杨春燕, 鲁雪林, 王秀萍. 大豆不同生育时期耐盐性综合评价及耐盐种质筛选[J]. 作物学报, 2025, 51(8): 1991-2008. |
[4] | 贺红利, 张雨涵, 杨静, 程云清, 赵杨, 李星诺, 司洪亮, 张兴政, 杨向东. 大豆e1-as基因突变体的创制及生理分析[J]. 作物学报, 2025, 51(8): 2228-2239. |
[5] | 杨海洋, 吴林宣, 李博纹, 石翰峰, 袁禧龙, 刘金朝, 蔡海荣, 陈诗怡, 郭涛, 王慧. 基于QTL定位发现的OsWRI3调控水稻种子的落粒性[J]. 作物学报, 2025, 51(7): 1712-1724. |
[6] | 胡蒙, 沙丹, 张晟瑞, 谷勇哲, 张世碧, 李静, 孙君明, 邱丽娟, 李斌. 大豆分枝数QTL定位及候选基因筛选[J]. 作物学报, 2025, 51(7): 1747-1756. |
[7] | 邵顺伟, 陈卓, 兰振东, 蔡兴奎, 邹华芬, 李晨曦, 唐景华, 朱熙, 张彧, 董建科, 金辉, 宋波涛. 基于BSA-seq技术的块茎芽眼深度QTL定位分析[J]. 作物学报, 2025, 51(7): 1725-1735. |
[8] | 郭栋财, 吕涛, 蔡永生, 买吾鲁达·艾合买提, 全家, 曲延英, 郑凯. 棉花纤维品质相关性状QTL元分析及候选基因鉴定[J]. 作物学报, 2025, 51(6): 1445-1466. |
[9] | 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568. |
[10] | 殷丛丛, 李睿琦, 岳霈尧, 李晨, 牛景萍, 赵晋忠, 杜维俊, 岳爱琴. 基于闭合哑铃介导等温扩增可视化检测大豆花叶病毒SC15方法的建立及应用[J]. 作物学报, 2025, 51(5): 1248-1260. |
[11] | 张金泽, 周庆国, 肖莉晶, 金海润, 欧阳青静, 龙旭, 晏中彬, 田恩堂. 芥菜型油菜不同组织硫苷含量的QTL定位与候选基因分析[J]. 作物学报, 2025, 51(5): 1166-1177. |
[12] | 林伟津, 郭泽佳, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 陈小平, 洪彦彬, 李少雄, 鲁清. 花生荚果产量相关性状QTL定位与候选基因分析[J]. 作物学报, 2025, 51(4): 969-981. |
[13] | 雍瑞, 胡文静, 吴迪, 汪尊杰, 李东升, 赵蝶, 尤俊超, 肖永贵, 王春平. 小麦穗粒数QTL分析及其对千粒重多效性评价[J]. 作物学报, 2025, 51(2): 312-323. |
[14] | 胡朋举, 郭颂, 宋亚辉, 金欣欣, 苏俏, 杨永庆, 王瑾. 多环境下花生含油量遗传及QTL定位分析[J]. 作物学报, 2025, 51(2): 324-333. |
[15] | 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394. |
|