欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1248-1260.doi: 10.3724/SP.J.1006.2025.44113

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于闭合哑铃介导等温扩增可视化检测大豆花叶病毒SC15方法的建立及应用

殷丛丛1,李睿琦2,岳霈尧2,李晨1,牛景萍3,赵晋忠1,杜维俊2,岳爱琴2,*   

  1. 1山西农业大学基础部, 山西晋中 030801; 2山西农业大学农学院, 山西晋中 030801; 3山西农业大学生命科学学院, 山西晋中 030801
  • 收稿日期:2024-07-09 修回日期:2025-02-17 接受日期:2025-02-17 出版日期:2025-05-12 网络出版日期:2025-02-20
  • 基金资助:
    本研究由国家重点研发计划项目(2021YFD1600601-2), 山西省科技重大专项计划揭榜挂帅项目子课题(202201140601025-3-06), 山西省种业创新良种联合攻关子课题(YZGG-03-04-01)和山西省“1331”工程—作物学一流学科建设项目。

Establishment and application of a visual detection method for soybean mosaic virus SC15 based on closed dumbbell mediated isothermal amplification

YIN Cong-Cong1,LI Rui-Qi2,YUE Pei-Yao2,LI Chen1,NIU Jing-Ping3,ZHAO Jin-Zhong1,DU Wei-Jun2,YUE Ai-Qin2,*   

  1. 1 Department of Basic Sciences, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China; 2 College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China; 3 College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
  • Received:2024-07-09 Revised:2025-02-17 Accepted:2025-02-17 Published:2025-05-12 Published online:2025-02-20
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2021YFD1600601-2), the Sub-project of the Shanxi Province Science and Technology Major Special Plan Unveiling Project (202201140601025-3-06), the Sub-project of the Shanxi Province Seed Industry Innovation and Improved Seed Joint Research and Development Project (YZGG-03-04-01), and the Shanxi “1331 Project” Crop Science First-Class Discipline Construction Project.

摘要:

大豆花叶病是一种由大豆花叶病毒(Soybean mosaic virus, SMV)引起的最为普遍和严重的全球性大豆病害,可导致大豆产量和种子品质大幅降低,我国大豆产区均受影响。在我国,SMV被划分为22个株系(SC1~SC22),其中SMV-SC15毒性但是,目前尚无有效的早期诊断方法本研究基于闭合哑铃介导等温扩增(Closed dumbbell mediated isothermal amplification, CDA),建立了一种可视化快速检测SMV-SC15的方法,实现了对SC15的高效特异检测与鉴定。根据SMV不同株系CP基因组序列的多态性设计了CDA方法的引物对(MF/MR),建立并优化了检测SMV-SC15的反应体系,确定最佳反应条件反应温度63℃Bst DNA聚合酶用量4.8 U以及引物浓度0.6 μmol L?1。以溴百里酚蓝(BTB)SYBR Green Ⅰ为指示剂实现了检测结果的可视化对比分析CDA体系和加环引物CDA体系(L-CDA)检测SMV-SC15的稳定性、特异性和灵敏度发现,L-CDA体系实时荧光扩增曲线达到阈值的时间比CDA缩短5~6 min其最低检出浓度低至10?4 ng μL?1,灵敏度为CDA体系的10倍。本研究通过L-CDA体系检测了200份不同品种的田间大豆叶片样本,显色结果对应于RT-qPCR检测的Ct值约为32,其灵敏度和特异性分别100%和96.3%

关键词: 大豆花叶病毒, 可视化检测, 闭合哑铃介导等温扩增, 核酸检测, 体系优化

Abstract:

Soybean mosaic virus (SMV) disease is one of the most widespread and serious global soybean diseases, which can cause significant reductions in soybean yields and seed quality, and affect all soybean-producing regions in China. SMV is divided into 22 strains (SC1–SC22) in China, among which SMV-SC15 has stronger toxicity. However, there is currently no effective early diagnostic method. In this study, a visual and rapid method for detecting SMV-SC15 was established based on closed dumbbell mediated isothermal amplification (CDA), achieving highly specific and sensitive detection of SC15. Primer pairs (MF/MR) for CDA method was designed based on the polymorphism of CP sequences in different strains of SMV, and the reaction system for detecting SMV-SC15 was optimized. The optimal reaction conditions were obtained as follows: reaction temperature was 63℃, the dose of Bst DNA polymerase was 4.8 U, and primer concentration was 0.6 μmol L?1. The detection results were visualized by using BTB and SYBR Green Ⅰ as color developing agents. A comparative analysis was conducted on the stability, specificity and sensitivity of the CDA system and the CDA system with ring primers (L-CDA) for detecting SMV-SC15. The results showed that the time for real-time fluorescence amplification curve of L-CDA system to reach the threshold was 5–6 min shorter than that of CDA system, and the lowest detection limit was 10?4 ng μL?1, which was 10 times lower than that of CDA system. The L-CDA system was used to detect 200 soybean leaf samples of different varieties in the field, and the colorimetric result corresponds to a Ct value of approximately 32 in RT-qPCR detection, with a sensitivity of 100% and a specificity of 96.3%.

Key words: soybean mosaic virus, visual detection, closed dumbbell mediated isothermal amplification, nucleic acid detection, system optimization

[1] Usovsky M, Chen P Y, Li D X, Wang A M, Shi A N, Zheng C M, Shakiba E, Lee D, Canella Vieira C, Lee Y C, et al. Decades of genetic research on Soybean mosaic virus resistance in soybean. Viruses, 2022, 14: 1122.
[2] Yang Y Q, Lin J, Zheng G J, Zhang M C, Zhi H J. Recombinant soybean mosaic virus is prevalent in Chinese soybean fields. Arch Virol, 2014, 159: 1793–1796.
[3] Anderson N R, Irizarry M D, Bloomingdale C A, Smith D L, Bradley C A, Delaney D P, Kleczewski N M, Sikora E J, Mueller D S, Wise K A. Effect of soybean vein necrosis on yield and seed quality of soybean. Can J Plant Pathol, 2017, 39: 334–341.
[4] 郭东全, 智海剑, 王延伟, 盖钧镒, 周新安, 杨崇良, 李凯, 李海朝. 黄淮中北部大豆花叶病毒株系的鉴定与分布. 中国油料作物学报, 2005, 27(4): 64–68.
Guo D Q, Zhi H J, Wang Y W, Gai J Y, Zhou X A, Yang C L, Li K, Li H C. Identification and distribution of soybean mosaic virus strains in Middle and Northern Huang Huai Region of China. Chin J Oil Crop Sci, 2005, 27(4): 64–68 (in Chinese with English abstract).
[5] Li D, Chen P, Alloatti J, Shi A, Chen Y F. Identification of new alleles for resistance to Soybean mosaic virus in soybean. Crop Sci, 2010, 50: 649–655.
[6] 车志军. 大豆对大豆花叶病毒SC7抗性的关联分析及候选基因Rsc7-1的功能研究. 南京农业大学博士学位论文, 江苏南京, 2019.
Che Z J. Genome-wide Association Study Reveals Novel Loci for Soybean Mosaic Virus SC7 Resistance and Functional Study of RSC7-1. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2019 (in Chinese with English abstract).
[7] 向文扬, 杨永庆, 任秋燕, 晋彤彤, 王丽群, 王大刚, 智海剑. 大豆抗SC3候选基因的克隆及分析. 作物学报, 2019, 45: 1822–1831.
Xiang W Y, Yang Y Q, Ren Q Y, Jin T T, Wang L Q, Wang D G, Zhi H J. Cloning and analysis of candidate gene resistant to SC3 in soybean. Acta Agron Sin, 2019, 45: 1822–1831 (in Chinese with English abstract).
[8] Hoffmeisterová H, Kratochvílová K, Čeřovská N, Slavíková L, Dušek J, Muller K, Fousek J, Plchová H, Navrátil O, Kundu J K, et al. One-enzyme RTX-PCR for the detection of RNA viruses from multiple virus Genera and crop plants. Viruses, 2022, 14: 298.
[9] Nabi S U, Mir J I, Yasmin S, Din A, Raja W H, Madhu G S, Parveen S, Mansoor S, Chung Y S, Sharma O C, et al. Tissue and time optimization for real-time detection of apple mosaic virus and apple necrotic mosaic virus associated with mosaic disease of apple (Malus domestica). Viruses, 2023, 15: 795.
[10] Chen H M, Zhou Y, Wang X F, Zhou C Y, Yang X Y, Li Z A. Detection of Citrus yellow vein clearing virus by Quantitative Real-time RT-PCR. Hortic Plant J, 2016, 2: 188–192.
[11] Mahmoud S A, Ganesan S, Ibrahim E, Thakre B, Teddy J G, Raheja P, Zaher W A. Evaluation of six different rapid methods for nucleic acid detection of SARS-COV-2 virus. J Med Virol, 2021, 93: 5538–5543.
[12] Deng J Q, Tian F, Liu C, Liu Y, Zhao S, Fu T, Sun J S, Tan W H. Rapid one-step detection of viral particles using an aptamer-based thermophoretic assay. J Am Chem Soc, 2021, 143: 7261–7266.
[13] Ning B, Yu T, Zhang S W, Huang Z, Tian D, Lin Z, Niu A, Golden N, Hensley K, Threeton B, et al. A smartphone-read ultrasensitive and quantitative saliva test for COVID-19. Sci Adv, 2021, 7: eabe3703.
[14] Thangsunan P, Temisak S, Jaimalai T, Rios-Solis L, Suree N. Sensitive detection of chicken meat in commercial processed food products based on one-step colourimetric loop-mediated isothermal amplification. Food Anal Meth, 2022, 15: 1341–1355.
[15] McGinnis E, Chan G, Hudoba M, Markin T, Yakimec J, Roland K. Malaria screening using front-line loop-mediated isothermal amplification: fourteen-month experience in a nonendemic regional hub-and-spoke laboratory setting. Am J Clin Pathol, 2021, 155: 690–697.
[16] Zhao Y X, Chen F, Li Q, Wang L H, Fan C H. Isothermal amplification of nucleic acids. Chem Rev, 2015, 115: 12491–12545.
[17] Tomita N, Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc, 2008, 3: 877–882.
[18] Dao Thi V L, Herbst K, Boerner K, Meurer M, Kremer L P, Kirrmaier D, Freistaedter A, Papagiannidis D, Galmozzi C, Stanifer M L, et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med, 2020, 12: eabc7075.
[19] Selva Sharma A, Lee N Y. Advancements in visualizing loop-mediated isothermal amplification (LAMP) reactions: a comprehensive review of colorimetric and fluorometric detection strategies for precise diagnosis of infectious diseases. Coord Chem Rev, 2024, 509: 215769.
[20] Zhang M, Wang H H, Wang H, Wang F F, Li Z P. CRISPR/Cas12a-assisted ligation-initiated loop-mediated isothermal amplification (CAL-LAMP) for highly specific detection of microRNAs. Anal Chem, 2021, 93: 7942–7948.
[21] Wu W J, Yin C C, Yue A Q, Niu J P, Du W J, Liu D B, Zhao J Z. Rapid and visual detection of soybean mosaic virus SC7 with a loop-mediated isothermal amplification strategy. Sens Actuat B Chem, 2022, 373: 132733.
[22] Li C, Guo S X, Sun M, Niu J P, Yin C C, Du W J, Zhao J Z, Liu D B, Yue A Q. A colorimetric RT-LAMP assay for rapid detection of Soybean mosaic virus SC15. ACS Omega, 2024, 9: 29765–29775.
[23] Liao W J, Long D, Huang Q S, Wei D D, Liu X B, Wan L G, Feng Y L, Zhang W, Liu Y. Rapid detection to differentiate hypervirulent Klebsiella pneumoniae (hvKp) from classical K. pneumoniae by identifying peg-344 with loop-mediated isothermal amplication (lamp). Front Microbiol, 2020, 11: 1189.
[24] Gonçalves D da S, Cassimiro A P A, de Oliveira C D, Rodrigues N B, Moreira L A. Wolbachia detection in insects through LAMP: loop mediated isothermal amplification. Parasit Vectors, 2014, 7: 228.
[25] Feng H, Chen J J, Yu Z, Li Z, Ye W W, Wang Y C, Zheng X B. A loop-mediated isothermal amplification assay can rapidly diagnose soybean root-rot and damping-off diseases caused by Pythium spinosum. Austr Plant Pathol, 2019, 48: 553–562.
[26] Li Y M, Fan P H, Zhou S S, Zhang L. Loop-mediated isothermal amplification (LAMP): a novel rapid detection platform for pathogens. Microb Pathog, 2017, 107: 54–61.
[27] Biswas G, Sakai M. Loop-mediated isothermal amplification (LAMP) assays for detection and identification of aquaculture pathogens: current state and perspectives. Appl Microbiol Biotechnol, 2014, 98: 2881–2895.
[28] Zhang Y L, Ouyang G F, Chen X H, Guo F, Mao R. Development of closed dumbbell mediated isothermal amplification assay for rapid and on-site detection of Vibrio parahaemolyticus. Microchem J, 2024, 207: 111892.
[29] Gui Z, Cai H, Wu L, Miao Q, Yu J F, Cai T, Mao R. Visual closed dumbbell-mediated isothermal amplification (CDA) for on-site detection of Rickettsia raoultii. PLoS Negl Trop Dis, 2022, 16: e0010747.
[30] Zhang Y L, Chen X H, Ouyang G F, Wang J P, Sun Y C, Lai Y L, Zhang P, Guo F, Yang S J, Mao R. Development and evaluation of rapid and simple detection of Klebsiella pneumoniae using closed dumbbell-mediated isothermal amplification diagnostic assay. Front Microbiol, 2024, 15: 1435010.
[31] Mao R, Qi L F, Li J J, Sun M, Wang Z, Du Y G. Competitive annealing mediated isothermal amplification of nucleic acids. Analyst, 2018, 143: 639–642.
[32] Zhang S Y, Lin S H, Zhu L J, Du Z H, Li J L, Wang L, Xu W T. Novel indicator and stem-loop-primer assisted isothermal amplification for the visual semi-quantitative detection of Toxoplasma gondii. Sens Actuat B Chem, 2022, 372: 132544.
[33] Guan X Y, Guo J C, Shen P, Yang L T, Zhang D B. Visual and rapid detection of two genetically modified soybean events using loop-mediated isothermal amplification method. Food Anal Meth, 2010, 3: 313–320.
[34] 高岭巍. 大豆花叶病毒病及其防治. 农业科技通讯, 2013, (3): 218–219.
Gao L W. Soybean mosaic virus disease and its control. Bull Agric Sci Technol, 2013, (3): 218–219 (in Chinese).
[35] 杨晓军. 大豆花叶病毒病防治技术. 现代农村科技, 2021, (10): 34.
Yang X J. Control techniques of soybean mosaic virus. Mod Agric Sci Technol, 2021, (10): 34 (in Chinese).
[36] 阳小凤,杨永庆,郑桂杰,智海剑,李小红. 大豆对大豆花叶病毒株系SC6和SC17抗病基因的精细定位. 作物学报, 2013, 39: 216–221.
Yang X F, Yang Y Q, Zheng G J, Zhi H J, Li X X. Fine Mapping of Resistance Genes to SMV Strains SC6 and SC17 in Soybean. Acta Agron Sin, 2013, 39: 216–221 (in Chinese with English abstract).
[37] 张军. 豫南大豆花叶病毒病的发生及防治. 种业导刊, 2012, (4): 17–18.
Zhang J. Occurrence and control of soybean mosaic virus disease in southern Henan Province. J Seed Ind Guide, 2012, (4): 17–18 (in Chinese).
[38] Seo J K, Ohshima K, Lee H G, Son M, Choi H S, Lee S H, Sohn S H, Kim K H. Molecular variability and genetic structure of the population of soybean mosaic virus based on the analysis of complete genome sequences. Virology, 2009, 393: 91–103.
[39] Zong T X, Yin J L, Jin T T, Wang L Q, Luo M X, Li K, Zhi H J. A DnaJ protein that interacts with soybean mosaic virus coat protein serves as a key susceptibility factor for viral infection. Virus Res, 2020, 281: 197870.
[40] Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes, 2002, 16: 223–229.
[1] 向文扬,杨永庆,任秋燕,晋彤彤,王丽群,王大刚,智海剑. 大豆抗SC3候选基因的克隆及分析[J]. 作物学报, 2019, 45(12): 1822-1831.
[2] 杨向东,牛陆,张伟,杨静,杜茜,邢国杰,郭东全,李启云,董英山*. RNAi介导SMV-P3基因沉默增强大豆对花叶病毒病的抗性[J]. 作物学报, 2016, 42(11): 1647-1655.
[3] 林静,杨永庆,侯文焕,杨春燕,谢令琴,智海剑,张孟臣. 重组型大豆花叶病毒河北分离物序列特征及侵染性[J]. 作物学报, 2015, 41(11): 1657-1662.
[4] 章洁琼,李红艳,胡小南,单志慧,唐桂香. 农杆菌介导的RNAi CP基因在大豆中的转化[J]. 作物学报, 2013, 39(09): 1594-1601.
[5] 阳小凤,杨永庆,郑桂杰,智海剑,李小红. 大豆对大豆花叶病毒株系SC6和SC17抗病基因的精细定位[J]. 作物学报, 2013, 39(02): 216-221.
[6] 王大刚, 马莹, 刘宁, 郑桂杰, 杨中路, 杨永庆, 智海剑. 大豆花叶病毒(SMV)株系SC4和SC8的抗性遗传分析[J]. 作物学报, 2012, 38(02): 202-209.
[7] 李文福;刘春燕;高运来;李灿东;蒋洪蔚;王堃;陈庆山;胡国华. 大豆种粒斑驳抗性的遗传分析及基因定位[J]. 作物学报, 2008, 34(09): 1544-1548.
[8] 智海剑;盖钧镒;何小红. 大豆对SMV抗侵染与抗扩展的遗传分析[J]. 作物学报, 2005, 31(10): 1260-1264.
[9] 张玉东;盖钧镒;马育华. 大豆对两个大豆花叶病毒本地株系抗性的遗传研究[J]. 作物学报, 1989, 15(03): 213-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .