作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1248-1260.doi: 10.3724/SP.J.1006.2025.44113
殷丛丛1,李睿琦2,岳霈尧2,李晨1,牛景萍3,赵晋忠1,杜维俊2,岳爱琴2,*
YIN Cong-Cong1,LI Rui-Qi2,YUE Pei-Yao2,LI Chen1,NIU Jing-Ping3,ZHAO Jin-Zhong1,DU Wei-Jun2,YUE Ai-Qin2,*
摘要:
大豆花叶病是一种由大豆花叶病毒(Soybean mosaic virus, SMV)引起的最为普遍和严重的全球性大豆病害,可导致大豆产量和种子品质大幅降低,我国大豆产区均受其影响。在我国,SMV被划分为22个株系(SC1~SC22),其中SMV-SC15毒性最强。但是,目前尚无有效的早期诊断方法,本研究基于闭合哑铃介导等温扩增(Closed dumbbell mediated isothermal amplification, CDA),建立了一种可视化快速检测SMV-SC15的方法,实现了对SC15的高效特异检测与鉴定。根据SMV不同株系CP基因组序列的多态性设计了CDA方法的引物对(MF/MR),建立并优化了检测SMV-SC15的反应体系,确定了最佳反应条件:反应温度63℃、Bst DNA聚合酶用量4.8 U以及引物浓度0.6 μmol L?1。以溴百里酚蓝(BTB)和SYBR Green Ⅰ为指示剂实现了检测结果的可视化。对比分析CDA体系和加环引物CDA体系(L-CDA)检测SMV-SC15的稳定性、特异性和灵敏度发现,L-CDA体系实时荧光扩增曲线达到阈值的时间比CDA缩短5~6 min,其最低检出浓度低至10?4 ng μL?1,灵敏度为CDA体系的10倍。本研究通过L-CDA体系检测了200份不同品种的田间大豆叶片样本,显色结果对应于RT-qPCR检测的Ct值约为32,其灵敏度和特异性分别为100%和96.3%。
[1] Usovsky M, Chen P Y, Li D X, Wang A M, Shi A N, Zheng C M, Shakiba E, Lee D, Canella Vieira C, Lee Y C, et al. Decades of genetic research on Soybean mosaic virus resistance in soybean. Viruses, 2022, 14: 1122. [2] Yang Y Q, Lin J, Zheng G J, Zhang M C, Zhi H J. Recombinant soybean mosaic virus is prevalent in Chinese soybean fields. Arch Virol, 2014, 159: 1793–1796. [3] Anderson N R, Irizarry M D, Bloomingdale C A, Smith D L, Bradley C A, Delaney D P, Kleczewski N M, Sikora E J, Mueller D S, Wise K A. Effect of soybean vein necrosis on yield and seed quality of soybean. Can J Plant Pathol, 2017, 39: 334–341. [4] 郭东全, 智海剑, 王延伟, 盖钧镒, 周新安, 杨崇良, 李凯, 李海朝. 黄淮中北部大豆花叶病毒株系的鉴定与分布. 中国油料作物学报, 2005, 27(4): 64–68. Guo D Q, Zhi H J, Wang Y W, Gai J Y, Zhou X A, Yang C L, Li K, Li H C. Identification and distribution of soybean mosaic virus strains in Middle and Northern Huang Huai Region of China. Chin J Oil Crop Sci, 2005, 27(4): 64–68 (in Chinese with English abstract). [5] Li D, Chen P, Alloatti J, Shi A, Chen Y F. Identification of new alleles for resistance to Soybean mosaic virus in soybean. Crop Sci, 2010, 50: 649–655. [6] 车志军. 大豆对大豆花叶病毒SC7抗性的关联分析及候选基因Rsc7-1的功能研究. 南京农业大学博士学位论文, 江苏南京, 2019. Che Z J. Genome-wide Association Study Reveals Novel Loci for Soybean Mosaic Virus SC7 Resistance and Functional Study of RSC7-1. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2019 (in Chinese with English abstract). [7] 向文扬, 杨永庆, 任秋燕, 晋彤彤, 王丽群, 王大刚, 智海剑. 大豆抗SC3候选基因的克隆及分析. 作物学报, 2019, 45: 1822–1831. Xiang W Y, Yang Y Q, Ren Q Y, Jin T T, Wang L Q, Wang D G, Zhi H J. Cloning and analysis of candidate gene resistant to SC3 in soybean. Acta Agron Sin, 2019, 45: 1822–1831 (in Chinese with English abstract). [8] Hoffmeisterová H, Kratochvílová K, Čeřovská N, Slavíková L, Dušek J, Muller K, Fousek J, Plchová H, Navrátil O, Kundu J K, et al. One-enzyme RTX-PCR for the detection of RNA viruses from multiple virus Genera and crop plants. Viruses, 2022, 14: 298. [9] Nabi S U, Mir J I, Yasmin S, Din A, Raja W H, Madhu G S, Parveen S, Mansoor S, Chung Y S, Sharma O C, et al. Tissue and time optimization for real-time detection of apple mosaic virus and apple necrotic mosaic virus associated with mosaic disease of apple (Malus domestica). Viruses, 2023, 15: 795. [10] Chen H M, Zhou Y, Wang X F, Zhou C Y, Yang X Y, Li Z A. Detection of Citrus yellow vein clearing virus by Quantitative Real-time RT-PCR. Hortic Plant J, 2016, 2: 188–192. [11] Mahmoud S A, Ganesan S, Ibrahim E, Thakre B, Teddy J G, Raheja P, Zaher W A. Evaluation of six different rapid methods for nucleic acid detection of SARS-COV-2 virus. J Med Virol, 2021, 93: 5538–5543. [12] Deng J Q, Tian F, Liu C, Liu Y, Zhao S, Fu T, Sun J S, Tan W H. Rapid one-step detection of viral particles using an aptamer-based thermophoretic assay. J Am Chem Soc, 2021, 143: 7261–7266. [13] Ning B, Yu T, Zhang S W, Huang Z, Tian D, Lin Z, Niu A, Golden N, Hensley K, Threeton B, et al. A smartphone-read ultrasensitive and quantitative saliva test for COVID-19. Sci Adv, 2021, 7: eabe3703. [14] Thangsunan P, Temisak S, Jaimalai T, Rios-Solis L, Suree N. Sensitive detection of chicken meat in commercial processed food products based on one-step colourimetric loop-mediated isothermal amplification. Food Anal Meth, 2022, 15: 1341–1355. [15] McGinnis E, Chan G, Hudoba M, Markin T, Yakimec J, Roland K. Malaria screening using front-line loop-mediated isothermal amplification: fourteen-month experience in a nonendemic regional hub-and-spoke laboratory setting. Am J Clin Pathol, 2021, 155: 690–697. [16] Zhao Y X, Chen F, Li Q, Wang L H, Fan C H. Isothermal amplification of nucleic acids. Chem Rev, 2015, 115: 12491–12545. [17] Tomita N, Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc, 2008, 3: 877–882. [18] Dao Thi V L, Herbst K, Boerner K, Meurer M, Kremer L P, Kirrmaier D, Freistaedter A, Papagiannidis D, Galmozzi C, Stanifer M L, et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med, 2020, 12: eabc7075. [19] Selva Sharma A, Lee N Y. Advancements in visualizing loop-mediated isothermal amplification (LAMP) reactions: a comprehensive review of colorimetric and fluorometric detection strategies for precise diagnosis of infectious diseases. Coord Chem Rev, 2024, 509: 215769. [20] Zhang M, Wang H H, Wang H, Wang F F, Li Z P. CRISPR/Cas12a-assisted ligation-initiated loop-mediated isothermal amplification (CAL-LAMP) for highly specific detection of microRNAs. Anal Chem, 2021, 93: 7942–7948. [21] Wu W J, Yin C C, Yue A Q, Niu J P, Du W J, Liu D B, Zhao J Z. Rapid and visual detection of soybean mosaic virus SC7 with a loop-mediated isothermal amplification strategy. Sens Actuat B Chem, 2022, 373: 132733. [22] Li C, Guo S X, Sun M, Niu J P, Yin C C, Du W J, Zhao J Z, Liu D B, Yue A Q. A colorimetric RT-LAMP assay for rapid detection of Soybean mosaic virus SC15. ACS Omega, 2024, 9: 29765–29775. [23] Liao W J, Long D, Huang Q S, Wei D D, Liu X B, Wan L G, Feng Y L, Zhang W, Liu Y. Rapid detection to differentiate hypervirulent Klebsiella pneumoniae (hvKp) from classical K. pneumoniae by identifying peg-344 with loop-mediated isothermal amplication (lamp). Front Microbiol, 2020, 11: 1189. [24] Gonçalves D da S, Cassimiro A P A, de Oliveira C D, Rodrigues N B, Moreira L A. Wolbachia detection in insects through LAMP: loop mediated isothermal amplification. Parasit Vectors, 2014, 7: 228. [25] Feng H, Chen J J, Yu Z, Li Z, Ye W W, Wang Y C, Zheng X B. A loop-mediated isothermal amplification assay can rapidly diagnose soybean root-rot and damping-off diseases caused by Pythium spinosum. Austr Plant Pathol, 2019, 48: 553–562. [26] Li Y M, Fan P H, Zhou S S, Zhang L. Loop-mediated isothermal amplification (LAMP): a novel rapid detection platform for pathogens. Microb Pathog, 2017, 107: 54–61. [27] Biswas G, Sakai M. Loop-mediated isothermal amplification (LAMP) assays for detection and identification of aquaculture pathogens: current state and perspectives. Appl Microbiol Biotechnol, 2014, 98: 2881–2895. [28] Zhang Y L, Ouyang G F, Chen X H, Guo F, Mao R. Development of closed dumbbell mediated isothermal amplification assay for rapid and on-site detection of Vibrio parahaemolyticus. Microchem J, 2024, 207: 111892. [29] Gui Z, Cai H, Wu L, Miao Q, Yu J F, Cai T, Mao R. Visual closed dumbbell-mediated isothermal amplification (CDA) for on-site detection of Rickettsia raoultii. PLoS Negl Trop Dis, 2022, 16: e0010747. [30] Zhang Y L, Chen X H, Ouyang G F, Wang J P, Sun Y C, Lai Y L, Zhang P, Guo F, Yang S J, Mao R. Development and evaluation of rapid and simple detection of Klebsiella pneumoniae using closed dumbbell-mediated isothermal amplification diagnostic assay. Front Microbiol, 2024, 15: 1435010. [31] Mao R, Qi L F, Li J J, Sun M, Wang Z, Du Y G. Competitive annealing mediated isothermal amplification of nucleic acids. Analyst, 2018, 143: 639–642. [32] Zhang S Y, Lin S H, Zhu L J, Du Z H, Li J L, Wang L, Xu W T. Novel indicator and stem-loop-primer assisted isothermal amplification for the visual semi-quantitative detection of Toxoplasma gondii. Sens Actuat B Chem, 2022, 372: 132544. [33] Guan X Y, Guo J C, Shen P, Yang L T, Zhang D B. Visual and rapid detection of two genetically modified soybean events using loop-mediated isothermal amplification method. Food Anal Meth, 2010, 3: 313–320. [34] 高岭巍. 大豆花叶病毒病及其防治. 农业科技通讯, 2013, (3): 218–219. Gao L W. Soybean mosaic virus disease and its control. Bull Agric Sci Technol, 2013, (3): 218–219 (in Chinese). [35] 杨晓军. 大豆花叶病毒病防治技术. 现代农村科技, 2021, (10): 34. Yang X J. Control techniques of soybean mosaic virus. Mod Agric Sci Technol, 2021, (10): 34 (in Chinese). [36] 阳小凤,杨永庆,郑桂杰,智海剑,李小红. 大豆对大豆花叶病毒株系SC6和SC17抗病基因的精细定位. 作物学报, 2013, 39: 216–221. Yang X F, Yang Y Q, Zheng G J, Zhi H J, Li X X. Fine Mapping of Resistance Genes to SMV Strains SC6 and SC17 in Soybean. Acta Agron Sin, 2013, 39: 216–221 (in Chinese with English abstract). [37] 张军. 豫南大豆花叶病毒病的发生及防治. 种业导刊, 2012, (4): 17–18. Zhang J. Occurrence and control of soybean mosaic virus disease in southern Henan Province. J Seed Ind Guide, 2012, (4): 17–18 (in Chinese). [38] Seo J K, Ohshima K, Lee H G, Son M, Choi H S, Lee S H, Sohn S H, Kim K H. Molecular variability and genetic structure of the population of soybean mosaic virus based on the analysis of complete genome sequences. Virology, 2009, 393: 91–103. [39] Zong T X, Yin J L, Jin T T, Wang L Q, Luo M X, Li K, Zhi H J. A DnaJ protein that interacts with soybean mosaic virus coat protein serves as a key susceptibility factor for viral infection. Virus Res, 2020, 281: 197870. [40] Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes, 2002, 16: 223–229. |
[1] | 向文扬,杨永庆,任秋燕,晋彤彤,王丽群,王大刚,智海剑. 大豆抗SC3候选基因的克隆及分析[J]. 作物学报, 2019, 45(12): 1822-1831. |
[2] | 杨向东,牛陆,张伟,杨静,杜茜,邢国杰,郭东全,李启云,董英山*. RNAi介导SMV-P3基因沉默增强大豆对花叶病毒病的抗性[J]. 作物学报, 2016, 42(11): 1647-1655. |
[3] | 林静,杨永庆,侯文焕,杨春燕,谢令琴,智海剑,张孟臣. 重组型大豆花叶病毒河北分离物序列特征及侵染性[J]. 作物学报, 2015, 41(11): 1657-1662. |
[4] | 章洁琼,李红艳,胡小南,单志慧,唐桂香. 农杆菌介导的RNAi CP基因在大豆中的转化[J]. 作物学报, 2013, 39(09): 1594-1601. |
[5] | 阳小凤,杨永庆,郑桂杰,智海剑,李小红. 大豆对大豆花叶病毒株系SC6和SC17抗病基因的精细定位[J]. 作物学报, 2013, 39(02): 216-221. |
[6] | 王大刚, 马莹, 刘宁, 郑桂杰, 杨中路, 杨永庆, 智海剑. 大豆花叶病毒(SMV)株系SC4和SC8的抗性遗传分析[J]. 作物学报, 2012, 38(02): 202-209. |
[7] | 李文福;刘春燕;高运来;李灿东;蒋洪蔚;王堃;陈庆山;胡国华. 大豆种粒斑驳抗性的遗传分析及基因定位[J]. 作物学报, 2008, 34(09): 1544-1548. |
[8] | 智海剑;盖钧镒;何小红. 大豆对SMV抗侵染与抗扩展的遗传分析[J]. 作物学报, 2005, 31(10): 1260-1264. |
[9] | 张玉东;盖钧镒;马育华. 大豆对两个大豆花叶病毒本地株系抗性的遗传研究[J]. 作物学报, 1989, 15(03): 213-220. |
|