欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (11): 1657-1662.doi: 10.3724/SP.J.1006.2015.01657

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

重组型大豆花叶病毒河北分离物序列特征及侵染性

林静1,2,杨永庆2,3,侯文焕2,杨春燕2,谢令琴1,*,智海剑3,张孟臣2,*   

  1. 1 河北农业大学农学院,河北保定 071001; 2 河北省农林科学院粮油作物研究所 / 国家大豆改良中心石家庄分中心 / 农业部黄淮海大豆生物学与遗传育种重点实验室 / 河北省作物遗传育种实验室,河北石家庄 050035; 3 南京农业大学作物遗传与种质创新国家重点实验室 / 农业部大豆生物学与遗传育种重点实验室 / 国家大豆改良中心,江苏南京 210095
  • 收稿日期:2015-04-04 修回日期:2015-07-10 出版日期:2015-11-12 网络出版日期:2015-08-12
  • 基金资助:

    本研究由国家自然科学基金项目(31401409,31471522),国家现代农业产业技术体系建设专项(CARS-004-PS06),国家转基因生物新品种培育重大专项(2014ZX0800402B,2014ZX08004001)和河北省科技支撑计划项目(14226309D)资助。

Sequence and Pathogenicity of Recombined Soybean Mosaic Virus Isolate from Hebei Province, China

LIN Jing1,2,YANG Yong-Qing2,3,HOU Wen-Huan2,YANG Chun-Yan2,XIE Ling-Qin1,*,ZHI Hai-Jian3,ZHANG Meng-Chen2,*   

  1. 1 College of Agronomy, Agricultural University of Hebei, Baoding, 071001; 2 Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences / National Soybean Improvement Center Shijiazhuang Sub-Center / Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture / Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China; 3.National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing 210095, China
  • Received:2015-04-04 Revised:2015-07-10 Published:2015-11-12 Published online:2015-08-12

摘要:

重组型大豆花叶病毒(soybean mosaic virus, SMV-R)是一种新SMV类型,在我国多个大豆产区广泛流行。本研究对一个重组型SMV河北分离物(HB-RS)进行全基因组测序,比较与非重组型SMV在侵染4个大豆品种后病毒浓度积累的差异。结果显示,除poly-A尾巴外,HB-RS (NCBI登录号为KR065437)9993个核苷酸组成,包含一个开放阅读框(open reading frame, ORF),翻译后形成3202个氨基酸,系统进化分析结果显示HB-RS分离物与另外两个重组型SMV分离物聚在一组。抗性鉴定结果显示,4个品种对HB-RSSc6平均病情指数分别为59.560.5相同大豆品种对不同的株系(分离物)可能呈现不同的症状和抗性表现,其中冀豆17Sc6HB-RS分别表现高抗和中抗,表明大豆对SMV的抗性存在一定的株系(分离物)专化性。此外,HB-RS4个品种中的浓度积累均高于Sc6,在南农1138-2病毒浓度最高,达522 U,其次为五星1(471 U)和冀黄13 (199 U),最低为冀豆17,仅90 U。说明HB-RS在寄主体内更具有生存适应性,不同品种对SMV存在抗性差异。冀豆17可作为抗性品种和亲本进一步推广。

关键词: 重组型大豆花叶病毒, 基因组, 病毒浓度, 侵染

Abstract:

Recombined Soybean mosaic virus (SMV-R), which is prevalent in many soybean production regions, is a novel type of SMV. To clarify the characteristics of recombinant SMV structure and pathogenicity of SMV-R, we sequenced the whole genomes of a SMV-R isolate (HB-RS) from Hebei province of China, and compered the difference of SMV infection and accumulation in four soybean cultivars with SMV-R. The results showed that besides the poly-A tail, HB-RS consists of 9993 nucleotides, encoding only one open reading frame and 3202 amino acids. Phylogenetic analysis showed that the HB-RS isolate was clustered with other two recombined SMV isolates. Resistance identification results showed that the average disease index of four cultivars resistant to HB-RS and Sc6 was 59.5 and 60.5, respectively. The same soybean cultivar had different symptoms and resistance levels to different strains (isolates), Jidou 17 showed high resistance to Sc6 and moderate resistance to HB-RS. These results indicated that soybean resistance to SMV exists strain (isolate) specialization. Additionally, the pathogenicity test showed that accumulation of HB-RS in four cultivars was higher than that of Sc6, indicating that HB-RS is more adaptable to the host plants. The host with highest accumulation of HB-RS was Nannong 1138-2, with 522-fold of reference virus accumulation, and the following was Wuxing 1 (471 U), Jihuang 13 (199 U) and, Jidou 17 (only 90 U), suggesting that HB-RS has a more survival adaptability in the soybean host. However different resistance levels to HB-RS were observed in various soybean cultivars and Jidou 17 could be used as a resistant cultivar in production or parents in further breeding.

Key words: Recombined SMV, Genome, Virus titer, Pathogenicity

[1]ShuklaD D, Ward C W, Brunt A A. Genome structure,variation and function. Potyviridae Wallingford England: CAB International, 1994, 74–110



[2]Bos L. Potyvirus, chaos or order? In potyvirus taxonomy. Arch Virol, 1992, 5(suppl): 31–46



[3]Riechmann J L, Lain S, Garcia J A. Highlights and prospects of potyvirus molecular biology. J Gen Virol, 1992, 73: 1–16



[4]Valli A, Lopez-Moya J J, Garcia J A. Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. J Gen Virol, 2007, 88: 1016–1028



[5]Nie X Z, Singh R P. Probable geographical grouping of PVYN and PVYNTN based on sequence variation in P1 and 5'-UTR of PVY genome and methods for differentiating North American PVYNTN. J Virol Methods, 2002, 103: 145–156



[6]Chen J, Zheng H Y, Lin L, Adams M J, Antoniw J F, Zhao M F, Shang Y F, Chen J P. A virus related to soybean mosaic virus from Pinellia ternata in China and its comparison with local soybean SMV isolates. Arch Virol, 2004, 149: 349–363



[7]Ali A, Natsuaki T, Okuda S. The complete nucleotide sequence of a Pakistani isolate of Watermelon mosaic virus provides further insights into the taxonomic status in the Bean common mosaic virus subgroup. Virus Genes, 2006, 32: 307–311



[8]Seo J K, Ohshima K, Lee H G, Son M, Choi H S, Lee S H, Sohn S H, Kim K H. Molecular variability and genetic structure of the population of soybean mosaic virus based on the analysis of complete genome sequences. Virology, 2009, 393: 91–103



[9]Ogawa T, Tomitaka Y, Nakagawa A, Ohshima K. Genetic structure of a population of Potato virus Y inducing potato tuber necrotic ringspot disease in Japan; comparison with North American and European populations. Virus research, 2008, 131:199–212



[10]Larsen R C, Miklas P N, Druffel K L, Wyatt S D. NL-3 K Strain is a stable and naturally occurring interspecific recombinant derived from Bean common mosaic necrosis virus and Bean common mosaic virus. Phytopathology, 2005, 95: 1037–1042



[11]Tan Z Y, Wada Y, Chen J S, Ohshima K. Inter- and intralineage recombinants are common in natural populations of Turnip mosaic virus. J Genl Virol, 2004, 85: 2683–2696



[12]Desbiez C, Lecoq H. The nucleotide sequence of Watermelon mosaic virus (WMV, Potyvirus) reveals interspecific recombination between two related potyviruses in the 5' part of the genome. Arch Virol, 2004, 149: 1619–1632



[13]Yang Y Q, Gong J W, Li H W, Li C Y, Wang D G, Li K, Zhi H J. Identification of a novel Soybean mosaic virus isolate in China that contains a unique 5 ' terminus sharing high sequence homology with Bean common mosaic virus. Virus Res, 2011,157: 13–18



[14]Yang Y Q, Lin J, Zheng G J, Zhang M C, Zhi H J. Recombinant soybean mosaic virus is prevalent in Chinese soybean fields. Arch Virol, 2014, 159: 1793–1796



[15]Woffelman C. DNAMAN for Windows, Version 5.2. 10. Lynon Biosoft, Institute of Molecular Plant Sciences, Netherlands: Leiden University, 2004



[16]Felsenstein J. Mathematics vs. evolution: mathematical evolutionary theory. Science, 1989, 246: 941–942



[17]Huson D H, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol, 2006, 23: 254–267



[18]Pasin F, Simon-Mateo C, Garcia J A. The hypervariable amino-terminus of P1 protease modulates potyviral replication and host defense responses. PloS Pathogens, 2014, 10: e1003985



[19]Zhi H J, Gai J Y. Performances and germplasm evaluation of quantitative resistance to soybean mosaic virus in soybeans. J Integr Agric, 2004, 3: 247–25

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[4] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[5] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[6] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[7] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[8] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[9] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[10] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[11] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[12] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[13] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[14] 徐益, 张力岚, 祁建民, 张列梅, 张立武. 主要麻类作物基因组学与遗传改良: 现状与展望[J]. 作物学报, 2021, 47(6): 997-1019.
[15] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!