作物学报 ›› 2015, Vol. 41 ›› Issue (11): 1657-1662.doi: 10.3724/SP.J.1006.2015.01657
林静1,2,杨永庆2,3,侯文焕2,杨春燕2,谢令琴1,*,智海剑3,张孟臣2,*
LIN Jing1,2,YANG Yong-Qing2,3,HOU Wen-Huan2,YANG Chun-Yan2,XIE Ling-Qin1,*,ZHI Hai-Jian3,ZHANG Meng-Chen2,*
摘要:
重组型大豆花叶病毒(soybean mosaic virus, SMV-R)是一种新SMV类型,在我国多个大豆产区广泛流行。本研究对一个重组型SMV河北分离物(HB-RS)进行全基因组测序,比较与非重组型SMV在侵染4个大豆品种后病毒浓度积累的差异。结果显示,除poly-A尾巴外,HB-RS (NCBI登录号为KR065437)由9993个核苷酸组成,包含一个开放阅读框(open reading frame, ORF),翻译后形成3202个氨基酸,系统进化分析结果显示HB-RS分离物与另外两个重组型SMV分离物聚在一组。抗性鉴定结果显示,4个品种对HB-RS和Sc6平均病情指数分别为59.5和60.5,相同大豆品种对不同的株系(分离物)可能呈现不同的症状和抗性表现,其中冀豆17对Sc6和HB-RS分别表现高抗和中抗,表明大豆对SMV的抗性存在一定的株系(分离物)专化性。此外,HB-RS在4个品种中的浓度积累均高于Sc6,在南农1138-2病毒浓度最高,达522 U,其次为五星1号(471 U)和冀黄13 (199 U),最低为冀豆17,仅90 U。说明HB-RS在寄主体内更具有生存适应性,不同品种对SMV存在抗性差异。冀豆17可作为抗性品种和亲本进一步推广。
[1]ShuklaD D, Ward C W, Brunt A A. Genome structure,variation and function. Potyviridae Wallingford England: CAB International, 1994, 74–110[2]Bos L. Potyvirus, chaos or order? In potyvirus taxonomy. Arch Virol, 1992, 5(suppl): 31–46[3]Riechmann J L, Lain S, Garcia J A. Highlights and prospects of potyvirus molecular biology. J Gen Virol, 1992, 73: 1–16[4]Valli A, Lopez-Moya J J, Garcia J A. Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. J Gen Virol, 2007, 88: 1016–1028[5]Nie X Z, Singh R P. Probable geographical grouping of PVYN and PVYNTN based on sequence variation in P1 and 5'-UTR of PVY genome and methods for differentiating North American PVYNTN. J Virol Methods, 2002, 103: 145–156[6]Chen J, Zheng H Y, Lin L, Adams M J, Antoniw J F, Zhao M F, Shang Y F, Chen J P. A virus related to soybean mosaic virus from Pinellia ternata in China and its comparison with local soybean SMV isolates. Arch Virol, 2004, 149: 349–363[7]Ali A, Natsuaki T, Okuda S. The complete nucleotide sequence of a Pakistani isolate of Watermelon mosaic virus provides further insights into the taxonomic status in the Bean common mosaic virus subgroup. Virus Genes, 2006, 32: 307–311[8]Seo J K, Ohshima K, Lee H G, Son M, Choi H S, Lee S H, Sohn S H, Kim K H. Molecular variability and genetic structure of the population of soybean mosaic virus based on the analysis of complete genome sequences. Virology, 2009, 393: 91–103[9]Ogawa T, Tomitaka Y, Nakagawa A, Ohshima K. Genetic structure of a population of Potato virus Y inducing potato tuber necrotic ringspot disease in Japan; comparison with North American and European populations. Virus research, 2008, 131:199–212[10]Larsen R C, Miklas P N, Druffel K L, Wyatt S D. NL-3 K Strain is a stable and naturally occurring interspecific recombinant derived from Bean common mosaic necrosis virus and Bean common mosaic virus. Phytopathology, 2005, 95: 1037–1042[11]Tan Z Y, Wada Y, Chen J S, Ohshima K. Inter- and intralineage recombinants are common in natural populations of Turnip mosaic virus. J Genl Virol, 2004, 85: 2683–2696[12]Desbiez C, Lecoq H. The nucleotide sequence of Watermelon mosaic virus (WMV, Potyvirus) reveals interspecific recombination between two related potyviruses in the 5' part of the genome. Arch Virol, 2004, 149: 1619–1632[13]Yang Y Q, Gong J W, Li H W, Li C Y, Wang D G, Li K, Zhi H J. Identification of a novel Soybean mosaic virus isolate in China that contains a unique 5 ' terminus sharing high sequence homology with Bean common mosaic virus. Virus Res, 2011,157: 13–18[14]Yang Y Q, Lin J, Zheng G J, Zhang M C, Zhi H J. Recombinant soybean mosaic virus is prevalent in Chinese soybean fields. Arch Virol, 2014, 159: 1793–1796[15]Woffelman C. DNAMAN for Windows, Version 5.2. 10. Lynon Biosoft, Institute of Molecular Plant Sciences, Netherlands: Leiden University, 2004[16]Felsenstein J. Mathematics vs. evolution: mathematical evolutionary theory. Science, 1989, 246: 941–942[17]Huson D H, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol, 2006, 23: 254–267[18]Pasin F, Simon-Mateo C, Garcia J A. The hypervariable amino-terminus of P1 protease modulates potyviral replication and host defense responses. PloS Pathogens, 2014, 10: e1003985[19]Zhi H J, Gai J Y. Performances and germplasm evaluation of quantitative resistance to soybean mosaic virus in soybeans. J Integr Agric, 2004, 3: 247–25 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[3] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[4] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[5] | 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634. |
[6] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[7] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[8] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[9] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[10] | 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490. |
[11] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[12] | 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238. |
[13] | 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296. |
[14] | 徐益, 张力岚, 祁建民, 张列梅, 张立武. 主要麻类作物基因组学与遗传改良: 现状与展望[J]. 作物学报, 2021, 47(6): 997-1019. |
[15] | 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123. |
|