作物学报 ›› 2015, Vol. 41 ›› Issue (11): 1648-1656.doi: 10.3724/SP.J.1006.2015.01648
赵德辉1,阎俊2,黄玉莲3,夏先春1,张艳1,田宇兵1,何中虎1,4,张勇1,*
ZHAO De-Hui1,YAN Jun2,HUANG Yu-Lian3,XIA Xian-Chun1,ZHANG Yan1,TIAN Yu-Bing1,HE Zhong-Hu1,4,ZHANG Yong1,*
摘要:
利用1BL/1RS易位系后代研究1BL/1RS易位对贮藏蛋白组分含量和面团流变学特性的影响有助于指导小麦品质改良工作。选用师栾02-1/周麦16组合14份F6品系,于2012—2013年度分别种植在河南安阳和焦作,采用反相超高效液相色谱(RP-UPLC)和凝胶排阻超高效液相色谱(SE-UPLC)方法分析贮藏蛋白组分含量,并研究它们与面团流变学特性的关系。结果表明,拉伸仪延展性和最大抗延阻力、不溶性谷蛋白聚合体含量和谷蛋白、醇溶蛋白等贮藏蛋白组分含量及其比例均受1BL/1RS易位有无类别和类内品系效应的显著影响,以类内品系效应较大;拉伸仪拉伸面积、谷蛋白含量及醇溶蛋白与谷蛋白含量比值的类内品系效应显著且较大。易位系和非易位系的贮藏蛋白组分含量和面团流变学特性的相关系数达显著水平,在易位系中,不溶性谷蛋白聚合体含量和拉伸面积(r = 0.92, P < 0.001)、延展性(r = 0.92, P < 0.001)、最大抗延阻力(r = 0.80, P < 0.01)呈显著正相关,面团流变学特性较好的品系不溶性谷蛋白聚合体含量均较高;在非易位系中,醇溶蛋白与谷蛋白含量比值和拉伸面积(r = -0.91, P < 0.001)、最大抗延阻力(r = -0.88, P < 0.001)呈显著负相关,面团流变学特性较好的品系醇溶蛋白与谷蛋白含量比值均较低。上述信息对以不溶性谷蛋白聚合体含量和醇溶蛋白与谷蛋白含量比值为指标改良1BL/1RS易位系的面筋品质有重要意义。
[1]何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37: 202–215He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011, 37: 202–215 (in Chinese with English abstract)[2]何中虎, 晏月明, 庄巧生, 张艳, 夏先春, 张勇, 王德森, 夏兰琴, 胡英考, 蔡民华, 陈新民, 阎俊, 周阳. 中国小麦品种品质评价体系建立与分子改良技术研究. 中国农业科学, 2006, 39: 1091–1101He Z H, Yan Y M, Zhuang Q S, Zhang Y, Xia X C, Zhang Y, Wang D S, Xia L Q, Hu Y K, Cai M H, Chen X M, Yan J, Zhou Y. Eatablishment of quality evaluation system and utilization of molecular methods for the improvement of Chinese wheat quality. Sci Agric Sin, 2006, 39: 1091–1101 (in Chinese with English abstract)[3]Gao L Y, Wang A L, Li X H, Dong K, Wang K, Appels R, Ma W J, Yan Y M. Wheat quality related differential expression of albumins and globulins revealed by two-dimensional difference gel electrophoresis (2-D DIGE). J Proteol, 2009, 73: 279–296[4]Zhang Y, Tang J W, Yan J, Zhang Y L, Zhang Y, Xia X C, He Z H. The gluten protein and interactions between components determine mixograph properties in an F6 recombinant inbred line population in bread wheat. J Cereal Sci, 2009, 50: 219–226[5]Payne P I. Genetics of wheat storage protein and the effect of allelic variation on breadmaking quality. Annu Rev Plant Physiol, 1987, 38: 141–153[6]Payne P I, Nightingale M A, Krattiger A F, Holt L M. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric, 1987, 40: 51–65[7]Payne P I, Corfield K G. Subunit composition of wheat glutenin proteins: isolated by gel filtration in a dissociating memdium. Planta, 1979, 145: 83–88[8]Li Q Y, Song X Y, Zhang E Y, Pei Y H, Yan Y M. Polyclonal antibodies to grain gliadins and their application in wheat quality prediction. Cereal Res Commun, 2008, 36: 117–124[9]Singh N K, Shepherd K W. Linkage mapping of genes controlling endosperm storage proteins in wheat: 1. Genes on the short arms of group 1 chromosomes. Theor Appl Genet, 1988, 75: 628–641[10]Metakovsky E V, Kne?evi? D, Javornik B. Gliadin allele composition of Yugoslav winter wheat cultivars. Euphytica, 1991, 54: 285–295[11]Jackson E A, Morel M H, Sontag Strohm T, Branlard G, Metakovsky E V, Redaelli R. Proposal for combining the classification systems of alleles of Gli-1 and Glu-3 loci in bread wheat (Triticum aestivum L.). J Genet Breed, 1996, 50: 321–336 [12]Park C S, Kang C S, Jeung J U, Woo S H. Influence of allelic variations in glutenin on the quality of pan bread and white salted noodles made from Korean whet cultivars. Theor Appl Genet, 2011, 180: 235–250[13]Gianibelli M C, Larroque O R, Macritchie F, Wrigley C W. Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem, 2001, 78: 635-646[14]Zhang X F, Jin H, Zhang Y, Liu D C, Li G Y, Xia X C, He Z H, Zhang A M. Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat. BMC Plant Biol, 2012, 12: 243[15]Rousset M, Carrillo J M, Qualset C O, Kasarda D D. Use of recombinant inbred line of wheat for study of associations of high-molecular-weight glutenin subunit alleles to quantitative traits. Theor Appl Genet, 1992, 83: 403–412[16]Kolster P, Eeuwijk F A, Gelder W M J. Additive and epistatic effects of allelic variation at the high molecular weight glutenin subunit loci in determining the bread-making quality of breeding lines of wheat. Euphytica, 1991, 55: 277–285[17]Gianibelli M C, Echaide M, Larroque O R, Carrillo J M, Dubcovsky J. Biochemical and molecular characterisation of Glu-1 loci in Argentinean wheat cultivars. Euphytica, 2002, 128: 61–73[18]Butow B J, Ma W, Gale K R, Cornish G B, Rampling L, Larroque O, Morell M K, Békés F. Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular-weight glutenin allele has a major impact on wheat flour dough strength. Theor Appl Genet, 2003, 107: 1524–1532[19]Weegels P L, Hamer R J, Scholfield J D. Functional properties of wheat glutenin. J Cereal Sci, 1996, 23: 1–18[20]Zhang P P, He Z H, Zhang Y, Xia X C, Liu J J, Yan J, Zhang Y. Pan bread and Chinese white salted noodle qualities of Chinese winter wheat cultivars and their relationship with gluten protein fractions. Cereal Chem, 2007, 84: 370–378[21]Zhang P P, He Z H, Chen D S, Zhang Y, Larroque O R, Xia X C. Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread. J Cereal Sci, 2007, 46: 1–10[22]庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003 (in Chinese)[23]周阳, 何中虎, 陈新民, 王德森, 张勇, 张改生. 30余年来北部冬麦区小麦品种产量改良遗传进展. 作物学报, 2007, 33: 1530–1535Zhou Y, He Z H, Chen X M, Wang D S, Zhang Y, Zhang G S. Genetic gain of wheat breeding for yield in northern winter wheat zone over 30 years. Acta Agron Sin, 2007, 33: 1530–1535 (in Chinese with English abstract)[24]周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军. 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004, 30: 531–535Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin, 2004, 30: 531–535 (in Chinese with English abstract)[25]刘建军, 何中虎, Peña R J, 赵振东. 1BL/1RS易位对小麦加工品质的影响. 作物学报, 2004, 30: 149–153Liu J J, He Z H, Peña R J, Zhao Z D. Effect of 1BL/1RS translocation on grain quality and noodle quality in breed wheat. Acta Agron Sin, 2004, 30: 149–153 (in Chinese with English abstract)[26]Graybosch R A, Peterson C J, Hansen L E, Worrall D, Shelton D R, Lukaszewski A. Comparative flour quality and protein characteristics of 1BL/1RS and 1AL/1RS wheat-rye translocation lines. J Cereal Sci, 1993, 17: 95–106[27]Wieser H, Kieffer R, Lelley T. The influence of 1B/1R chromosome translocation on gluten protein composition and technological properties of bread wheat. J Sci Food Agric, 2000, 80: 1640–1647[28]Gupta R B, Macritchie F. A rapid one-step one-dimensional SDS-PAGE procedure for analysis of subunit composition of glutenin in wheat. J Cereal Sci, 1991, 14: 105–109[29]Yu Z T, Han C X, Yan X, Li X H, Jiang G L, Yan Y M. Rapid characterization of wheat low molecular weight glutenin subunits by ultraperformance liqid chromatography (UPLC). J Agric Food Chem, 2013, 61: 4026–4034[30]Yan X, Liu W, Yu Z T, Han C X, Zeller F J, Hsam S L K, Yan Y M. Rapid separation and identification of wheat HMW glutenin subunits by UPLC and comparative analysis with HPLC. Aust J Crop Sci, 2014, 8: 140–147 |
[1] | 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404. |
[2] | 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502. |
[3] | 郑燕燕, 黄德华, 李金龙, 张会飞, 鲍印广, 倪飞, 吴佳洁. 小麦高效转基因受体品系CB037的抗条锈性分析[J]. 作物学报, 2020, 46(11): 1743-1749. |
[4] | 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840. |
[5] | 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447. |
[6] | 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705. |
[7] | 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267. |
[8] | 肖永贵,Susanne DREISIGACKER,Claudia NU?EZ-RíOS,胡卫国,夏先春,何中虎. 基于FLUOstar平台的小麦dsDNA荧光定量与基因型分析[J]. 作物学报, 2017, 43(07): 947-953. |
[9] | 董雪,刘梦,赵献林,冯玉梅,杨燕. 普通小麦近缘种低分子量麦谷蛋白亚基Glu-A3基因的分离和鉴定[J]. 作物学报, 2017, 43(06): 829-838. |
[10] | 刘凯,邓志英,张莹,王芳芳,刘佟佟,李青芳,邵文,赵宾,田纪春*,陈建省*. 小麦茎秆断裂强度相关性状QTL的连锁和关联分析[J]. 作物学报, 2017, 43(04): 483-495. |
[11] | 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500. |
[12] | 王鑫,马莹雪,杨阳,王丹峰,殷慧娟,王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析[J]. 作物学报, 2016, 42(08): 1134-1142. |
[13] | 孔欣欣,张艳,赵德辉,夏先春,王春平,何中虎. 北方冬麦区新育成优质小麦品种面条品质相关性状分析[J]. 作物学报, 2016, 42(08): 1143-1159. |
[14] | 刘凯,邓志英,李青芳,张莹,孙彩铃,田纪春*,陈建省*. 利用高密度SNP 遗传图谱定位小麦穗部性状基因[J]. 作物学报, 2016, 42(06): 820-831. |
[15] | 李文爽,夏先春,何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法[J]. 作物学报, 2016, 42(05): 706-713. |
|