欢迎访问作物学报,今天是

作物学报

• •    

棉花纤维品质相关性状QTL元分析及候选基因鉴定

郭栋财**,吕涛**,蔡永生,买吾鲁达·艾合买提,陈全家,曲延英*,郑凯*   

  1. 新疆农业大学 / 新疆作物生物育种重点实验室, 新疆乌鲁木齐 830052
  • 收稿日期:2024-07-05 修回日期:2025-01-23 接受日期:2025-01-23 网络出版日期:2025-02-11
  • 通讯作者: 郑凯, E-mail:zhengkai555@126.com; 曲延英, E-mail: xjyyq5322@126.com
  • 基金资助:
    本研究由国家自然科学基金青年基金项目(32301867), 新疆维吾尔自治区重点研发项目(2022B02009-1), “天山英才”培养计划项目(2023TSYCLJ0012)和新疆农业大学作物学重点学科发展基金项目(XNCDKY2021016)资助。

Meta-analysis of QTL and identification of candidate genes for fiber quality in cotton

GUO Dong-Cai**,LYU Tao**,CAI Yong-Sheng,MAI WU-LU-DA·AI He-Mai-Ti,CHEN Quan-Jia,QU Yan-Ying*,ZHENG Kai*   

  1. Xinjiang Agricultural University / Laboratory of Crop Genetic Improvement and Germplasm Innovation, Urumqi 830052, Xinjiang, China
  • Received:2024-07-05 Revised:2025-01-23 Accepted:2025-01-23 Published online:2025-02-11
  • Supported by:
    This study was supported by the National Natural Science Foundation of China Young Scientists Fund (32301867), the Key Research and Development Project of the Xinjiang Uygur Autonomous Region (2022B02009-1), the “Tianshan Talent” Training Program (2023TSYCLJ0012), and the Key Discipline Development Fund for Crop Science of Xinjiang Agricultural University (XNCDKY2021016).

摘要:

棉花纤维品质性状是受多基因控制的复杂数量性状,深入挖掘棉花纤维品质数量性状基因座(quantitative trait loci, QTL)和候选基因对棉花纤维品质遗传改良具有重要意义。本研究利用BioMercator 4.2软件,以Blenda A等发布的棉花高密度分子标记遗传连锁图谱为参考图谱,对来自21个独立纤维品质QTL定位研究中的379个控制棉花纤维品质的原始QTL进行图谱整合、映射以及QTL元分析。获得的74个控制棉花纤维品质性状的一致性MQTL (meta quantitative trait loci, MQTL),分布在26条染色体上,置信区间最小为0.5 cM,所有MQTL中共包含13,833个基因。通过RNA-seqGOKEGG富集分析,挖掘到32个与棉花纤维品质相关的候选基因。通过qRT-PCR验证发现,这些基因在棉花纤维发育不同时期差异表达,推测其可能参与调控棉花纤维发育。本研究为棉花纤维品质性状分子标记辅助选择育种和基因克隆提供理论依据

关键词: 棉花, 纤维品质, 一致性QTL, 元分析

Abstract:

Cotton fiber quality is a complex quantitative trait controlled by multiple genes. Identifying true quantitative trait loci (QTLs) and candidate genes associated with fiber quality is critical for the genetic improvement of cotton. In this study, QTL meta-analysis was performed using BioMercator 4.2 software, with a high-density molecular marker genetic linkage map published by Blenda A et al. as the reference. A total of 379 original QTLs related to cotton fiber quality, derived from 21 independent QTL mapping studies, were integrated, mapped, and analyzed. This analysis identified 74 meta-QTLs (MQTLs) associated with cotton fiber quality traits, distributed across 26 chromosomes, with the minimum confidence interval of 0.5 cM. These MQTLs collectively encompassed 13,833 genes. Through RNA-seq analysis combined with GO and KEGG enrichment analysis, 32 candidate genes related to cotton fiber quality were identified. qRT-PCR validation revealed that these genes exhibited differential expression during various stages of fiber development, suggesting their potential roles in regulating fiber growth and quality. This study provides a theoretical basis for molecular marker-assisted breeding and gene cloning for cotton fiber quality.

Key words: cotton, fiber quality, consistency QTL, meta-analysis

[1] Wendel J F, Grover C E. Taxonomy and evolution of the cotton genus, Gossypium. In: Cotton. Madison, WI, USA: American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Science Society of America, Inc., 2015.

[2] 杨君, 马峙英, 王省芬. 棉花纤维品质改良相关基因研究进展. 中国农业科学, 2016, 49: 4310–4322.

Yang J, Ma Z Y, Wang X F. Progress in studies on genes related to fiber quality improvement of cotton. Sci Agric Sin, 2016, 49: 4310–4322 (in Chinese with English abstract).

[3] 郭晓豪, 王寒涛, 魏鑫, 张晶晶, 付小康, 马亮, 魏恒玲, 喻树迅. 基于两个陆地棉低世代群体定位纤维品质相关QTL. 棉花学报, 2021, 33: 33–41.

Guo X H, Wang H T, Wei X, Zhang J J, Fu X K, Ma L, Wei H L, Yu S X. QTL mapping of fiber quality traits in two lower generation populations of upland cotton. Cotton Sci, 2021, 33: 33–41 (in Chinese with English abstract).

[4] 李兴河, 王海涛, 刘存敬, 唐丽媛, 张素君, 蔡肖, 张香云, 张建宏. 利用海岛棉染色体片段导入系定位纤维品质性状QTL. 作物杂志, 2023, (5): 1–9.

Li X H, Wang H T, Liu C J, Tang L Y, Zhang S J, Cai X, Zhang X Y, Zhang J H. QTL mapping for fiber quality traits using Gossypium barbadense chromosome segment introgression lines. Crops, 2023, (5): 1–9 (in Chinese with English abstract).

[5] 姜骁. 中棉所70重组自交系群体纤维品质QTL和优质基因全基因组挖掘. 中国农业科学院博士学位论文, 北京, 2021.

Jiang X. Genome-wide Mining of Fiber Quality QTL and High-quality Genes in Recombinant Inbred Line Population of China Cotton Institute 70. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2021 (in Chinese with English abstract).

[6] Madden L V, Piepho H P, Paul P A. Statistical models and methods for network meta-analysis. Phytopathology, 2016, 106: 792–806.

[7] Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics, 2004, 20: 2324–2326.

[8] 左煜昕, 马靖福, 刘媛, 张沛沛, 栗孟飞, 程宏波, 陈思瑾, 幸华, 杨德龙. 小麦穗粒数QTL整合与元分析. 麦类作物学报, 2020, 40: 771–779.

Zuo Y X, Ma J F, Liu Y, Zhang P P, Li M F, Cheng H B, Chen S J, Xing H, Yang D L. Mapping and meta-analysis of QTLs for the kernel number per spike in wheat (Triticum aestivum L.). J Triticeae Crops, 2020, 40: 771–779 (in Chinese with English abstract).

[9] 闫伟, 李元, 宋茂兴, 张旷野, 孙铭泽, 瞿会, 李凤海, 钟雪梅, 朱敏, 杜万里, . 玉米抗灰斑病QTL元分析及其验证. 作物学报, 2016, 42: 758–767.

Yan W, Li Y, Song M X, Zhang K Y, Sun M Z, Qu H, Li F H, Zhong X M, Zhu M, Du W L, et al. Meta-analysis and validation of QTL for resistance to gray leaf spot in maize. Acta Agron Sin, 2016, 42: 758–767 (in Chinese with English abstract).

[10] 程宇坤, 何万龙, 任毅, 耿洪伟. 小麦耐盐性QTL的元分析. 麦类作物学报, 2023, 43: 1319–1325.

Cheng Y K, He W L, Ren Y, Geng H W. Meta-analysis of QTL for wheat salt tolerance. J Triticeae Crops, 2023, 43: 1319–1325 (in Chinese with English abstract).

[11] 杨鑫雷, 周晓栋, 王省芬, 李志坤, 张艳, 刘恒蔚, 吴立强, 张桂寅, 马峙英. 棉花纤维品质性状QTL的元分析. 棉花学报, 2013, 25: 503–509.

Yang X L, Zhou X D, Wang X F, Li Z K, Zhang Y, Liu H W, Wu L Q, Zhang G Y, Ma Z Y. Quantitative traits locus meta-analysis of fiber quality traits in cotton. Cotton Sci, 2013, 25: 503–509 (in Chinese with English abstract).

[12] Said J I, Lin Z X, Zhang X L, Lin Z X, Zhang X L, Song M Z, Zhang J F. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics, 2013, 14: 776.

[13] Said J I, Song M Z, Wang H T, Lin Z X, Zhang X L, Fang D D, Zhang J F. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics, 2015, 290: 1003–1025.

[14] Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet, 1997, 27: 125–132.

[15] Blenda A, Fang D D, Rami J F, Garsmeur O, Luo F, Lacape J M. A high-density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One, 2012, 7: e45739.

[16] Glass G V. Primary, secondary, and meta-analysis of research. Educ Res, 1976, 5: 3.

[17] Duan Y J, Chen Q, Chen Q J, Zheng K, Cai Y S, Long Y L, Zhao J Y, Guo Y P, Sun F L, Qu Y Y. Analysis of transcriptome data and quantitative trait loci enables identification of candidate genes responsible for fiber strength in Gossypium barbadense. G3 (Bethesda), 2022, 12: jkac167.

[18] Goldberg D H, Victor J D, Gardner E P, Gardner D. Spike train analysis toolkit: enabling wider application of information-theoretic techniques to neurophysiology. Neuroinformatics, 2009, 7: 165–178.

[19] Kroll K W, Mokaram N E, Pelletier A R, Frankhouser D E, Westphal M S, Stump P A, Stump C L, Bundschuh R, Blachly J S, Yan P. Quality control for RNA-seq (QuaCRS): an integrated quality control pipeline. Cancer Inform, 2014, 13: 7–14.

[20] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114–2120.

[21] Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016, 11: 1650–1667.

[22] Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51: 224–229.

[23] Liao Y, Smyth G K, Shi W. FeatureCounts: an efficient general-purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923–930.

[24] 邓晓英. 杂交棉中棉所70产量和纤维品质性状的QTL定位. 山西农业大学硕士学位论文, 山西太谷, 2016.

Deng X Y. Identification of QTL for Yield and Fiber Quality Traits in Hybrid Cotton CCRI 70. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2016 (in Chinese with English abstract).

[25] 郭丽雪, 石玉真, 李俊文, 龚举武, 刘爱英, 商海红, 巩万奎, 陈婷婷, 葛群, 孙杰, 袁有禄. 陆海渐渗系分离群体(F2)产量和纤维品质性状的QTL定位. 棉花学报, 2015, 27: 550–560.

Guo L X, Shi Y Z, Li J W, Gong J W, Liu A Y, Shang H H, Gong W K, Chen T T, Ge Q, Sun J, Yuan Y L. Mapping QTL of fiber yield and quality traits in F2 populations of chromosome segment substitution lines from Gossypium hirsutum × Gossypium barbadense. Cotton Sci, 2015, 27: 550–560 (in Chinese with English abstract).

[26] 何蕊. 陆地棉中棉所36背景的海岛棉染色体片段代换系(BC5F3、BC5F3:4、BC5F3:5)的评价及QTL定位. 西南大学硕士学位论文, 重庆, 2014.

He R. The Evaluation and Identifying QTL of Chromosome Segment Substitution Lines (BC5F3, BC5F3:4, C5F3:5) in CCRI36 Background of Gossypium hirsutum L. MS Thesis of Southwest University, Chongqing, China, 2014 (in Chinese with English abstract).

[27] 江晗. 陆地棉超高强纤维品质与产量相关性状的QTL定位. 南京农业大学硕士学位论文, 江苏南京, 2013.

Jiang H. QTL Mapping of Fiber Qualities and Yield Components in Ultra-high Strength Upland Cotton. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013 (in Chinese with English abstract).

[28] 焦梦佳. 利用棉花优质渐渗系进行纤维长度及其相关性状QTL的定位. 山东师范大学硕士学位论文, 山东济南, 2020.

Jiao M J. QTL Mapping for Fiber Length and Other Related Traits of Cotton Using Elite Germplasm with Introgression of Gossypium barbadense. MS Thesis of Shandong Normal University, Jinan, Shandong, China, 2020 (in Chinese with English abstract).

[29] 李爱国. AB-QTL法定位海岛棉产量及纤维品质基因. 湖南农业大学硕士学位论文, 湖南长沙, 2008.

Li A G. QTL Analysis of Fiber Yield and Quality Using Gossypium hirsutum × G. Barbadense Advanced Backcross Populations. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2008 (in Chinese with English abstract).

[30] Liang Q Z, Hu C, Hua H, Li Z H, Hua J P. Construction of a linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Chin Sci Bull, 2013, 58: 3233–3243.

[31] 梁燕. 早熟陆地棉染色体片段代换系的构建及QTL初步定位. 中国农业科学院硕士学位论文, 北京, 2010.

Liang Y. Construction of Chromosome Segment Substitution Lines and Primary QTL Mapping in Early-maturing Upland Cotton. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2010 (in Chinese with English abstract).

[32] 李超, 李志坤, 谷淇深, 杨君, 柯会锋, 吴立强, 王国宁, 张艳, 吴金华, 张桂寅, 等. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位. 作物学报, 2018, 44: 1114–1126.

Li C, Li Z K, Gu Q S, Yang J, Ke H F, Wu L Q, Wang G N, Zhang Y, Wu J H, Zhang G Y, et al. Molecular evaluation for chromosome segment substitution lines of Gossypium barbadense and QTL mapping for fiber quality and yield. Acta Agron Sin, 2018, 44: 1114–1126 (in Chinese with English abstract).

[33] Liu X Y, Teng Z H, Wang J X, Wu T T, Zhang Z Q, Deng X P, Fang X M, Tan Z Y, Ali I, Liu D X, et al. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.). Mol Genet Genomics, 2017, 292: 1281–1306.

[34] 秦永生. 陆地棉重要农艺性状QTL定位研究. 南京农业大学硕士学位论文, 江苏南京, 2009.

Qin Y S. Research on QTL Mapping for Agronomic Traits in Upland Cotton. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2009 (in Chinese with English abstract).

[35] Sun F D, Zhang J H, Wang S F, Gong W K, Shi Y Z, Liu A Y, Li J W, Gong J W, Shang H H, Yuan Y L. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed, 2012, 30: 569–582.

[36] Wang F R, Xu Z Z, Sun R, Gong Y C, Liu G D, Zhang J X, Wang L M, Zhang C Y, Fan S J, Zhang J. Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L. Mol Breed, 2013, 32: 547–562.

[37] 王娟, 郭旺珍, 张天真. 渝棉1号优质纤维QTL的标记与定位. 作物学报, 2007, 33: 1915–1921.

Wang J, Guo W Z, Zhang T Z. QTL mapping for fiber quality properties in cotton cultivar Yumian 1. Acta Agron Sin, 2007, 33: 1915–1921 (in Chinese with English abstract).

[38] 王义青. 陆地棉优异纤维品质及产量性状的QTL挖掘. 中国农业科学院硕士学位论文, 北京, 2010.

Wang Y Q. Identification of QTLs for Yield and Elite Fiber Quality Traits in Upland Cotton (Gossypium hirsutum L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2010 (in Chinese with English abstract).

[39] 杨芮, 李鹏涛, 肖向辉, 李俊文, 龚举武, 刘爱英, 巩万奎, 商海红, 葛群, 卢全伟, 等. 棉花陆海渐渗系次级分离群体产量和纤维品质QTL定位. 棉花学报, 2022, 34: 401–415.

Yang R, Li P T, Xiao X H, Li J W, Gong J W, Liu A Y, Gong W K, Shang H H, Ge Q, Lu Q W, et al. QTL mapping for yield and fiber quality traits in secondary segregate population of cotton chromosome segment introgression lines. Cotton Sci, 2022, 34: 401–415 (in Chinese with English abstract).

[40] 杨昶, 郭旺珍, 张天真. 陆地棉抗黄萎病、纤维品质和产量等农艺性状的QTL定位. 分子植物育种, 2007, 5: 797–805.

Yang C, Guo W Z, Zhang T Z. QTL mapping for resistance to Verticillium wilt, fiber quality and yield traits in upland cotton (Gossypium hirsutum L.). Mol Plant Breed, 2007, 5: 797–805 (in Chinese with English abstract).

[41] 杨泽茂. 陆地棉染色体片段代换系的构建及QTL定位初探. 湖南农业大学硕士学位论文, 湖南长沙, 2009.

Yang Z M. Development of Chromosome Segment Substitution Lines and Primary Identification of QTL in Upland Cotton (Gossypium hirsutum). MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2009 (in Chinese with English abstract).

[42] Chen Y, Liu G D, Ma H H, Song Z Q, Zhang C Y, Zhang J X, Zhang J H, Wang F R, Zhang J. Identification of introgressed alleles conferring high fiber quality derived from Gossypium barbadense L. in secondary mapping populations of G. hirsutum L. Front Plant Sci, 2018, 9: 1023.

[43] Yu J W, Yu S X, Gore M, Wu M, Zhai H H, Li X L, Fan S L, Song M Z, Zhang J F. Identification of quantitative trait loci across interspecific F2, F2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica, 2013, 191: 375–389.

[44] 周晓栋. 棉纤维品质主效QTL的挖掘与验证. 河北农业大学硕士学位论文, 河北保定, 2013.

Zhou X D. Mining and Identification of Major QTL for Fiber Quality in Allotetraploid Cotton. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2013 (in Chinese with English abstract).

[45] Nnaemeka Ekene Vitalis. GhC/VIF2, GhCML45和GhMYB308调控陆地棉纤维发育的机理探讨. 浙江理工大学硕士学位论文, 浙江杭州, 2022.

Nnaemeka E. Exploring the Mechanism of GhC/VIF2, GhCML45 and GhMYB308 Regulating the Fiber Development in Upland Cotton. MS Thesis of Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China, 2022 (in Chinese with English abstract).

[46] 窦玲玲, 田再垄, 李婷婷, 马雄风, 肖光辉. 陆地棉OFP基因家族的全基因组鉴定及表达分析. 中国科学: 生命科学, 2022, 52: 510–522.

Dou L L, Tian Z L, Li T T, Ma X F, Xiao G H. Genome-wide identification and expression analysis of OFP gene family in upland cotton. Sci Sin Vitae, 2022, 52: 510–522 (in Chinese with English abstract).

[47] 张丽雅. 棉花黄萎病抗性相关基因GhPrx14的功能分析和棉花OFP家族的生物信息学分析. 郑州大学硕士学位论文, 河南郑州, 2022.

Zhang L Y. Functional Analysis of Cotton Verticillium Wilt Resistance Related Gene GhPrxl4 and Bioinformatics Analysis of OFP Family in Cotton. MS Thesis of Zhengzhou University, Zhengzhou, Henan, China, 2022 (in Chinese with English abstract).

[48] 王艳鸽, 孙全, 李祖亮. 棉花GbCML24基因的克隆及其功能分析. 分子植物育种, 2019, 17: 4873–4882.

 Wang Y G, Sun Q, Li Z L. Cloning and functional analysis of cotton (Gossypium barbadense) GbCML24 gene. Mol Plant Breed, 2019, 17: 4873–4882 (in Chinese with English abstract).

[49] 张成伟, 郭林林, 王秀兰, 张辉, 石海燕, 许文亮, 李学宝. 4个棉花ADF基因的分子鉴定及其差异表达. 遗传学报, 2007, 34: 347–354.

 Zhang C W, Guo L L, Wang X L, Zhang H, Shi H Y, Xu W L, Li X B. Molecular characterization of four ADF genes differentially expressed in cotton. J Genet Genom, 2007, 34: 347–354 (in Chinese with English abstract).

[50] Chen F, Guo Y J, Chen L, Gan X L, Liu M, Li J, Xu W L. Global identification of genes associated with xylan biosynthesis in cotton fiber. J Cotton Res, 2020, 3: 25.

[51] 李颖, 彭佳泺, 巨吉生, 王彩香, 宿俊吉. 响应赤霉素GA3调控陆地棉开花关键基因GhGASA9GhGASA14的鉴定. : 第二十届中国作物学会学术年会论文摘要集. 北京: 中国作物学会, 2023. p 1.

 Li Y, Peng J L, Ju J S, Wang J J, Su J J. Identification of key flowering genes GhGASA9 and GhGASA14 in response to gibberellin GA3 regulation in upland cotton. In: Abstracts of the 20th Annual Meeting of the Crop Science Society of China. Beijing: The Crop Science Society of China, 2023. p 1 (in Chinese with English abstract).

[52] Qiao K K, Ma C K, Lyu J Y, Zhang C J, Ma Q F, Fan S L. Identification, characterization, and expression profiles of the GASA genes in cotton. J Cotton Res, 2021, 4: 7.

[53] 高雅楠. GhERF41调控初生壁与次生壁合成的研究. 郑州大学硕士学位论文, 河南郑州, 2022.

 Gao Y N. Study on the Roles of GhERF41 in Regulating Biosynthesis of Primary Cell Wall and Secondary Cell Wall. MS Thesis of Zhengzhou University, Zhengzhou, Henan, Chian, 2022 (in Chinese with English abstract).

[54] 何绍萍. GhERF108调控棉纤维细胞次生壁发育的机制研究. 华中师范大学硕士学位论文, 湖北武汉, 2020.

 He S P. The Role of GhERF108 in Regulating Secondary Cell Wall Synthesis of Cotton Fibers. MS Thesis of Central China Normal University, Wuhan, Hubei, China, 2023 (in Chinese with English abstract).

[55] 王晔. 亚洲棉LBDs同源基因的克隆及应用. 华中农业大学硕士学位论文, 湖北武汉, 2015.

 Wang Y. Molecular Cloning and Application of LBDs from Cotton (Gossypium arboreum L.). MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).

[56] 汤孟玲. GbKCS14响应温度调控棉纤维发育的分子机理. 浙江农林大学硕士学位论文, 浙江杭州, 2019.

 Tang M L. Molecular Mechanism of GbKCS14 Responsive to Temperature in Regulation of Cotton Fiber Development. MS Thesis of Zhejiang A&F University, Hangzhou, Zhejiang, China, 2019 (in Chinese with English abstract).

[57] 杜雪琼. 棉花纤维发育相关基因GhKCS13的克隆与功能验证. 华中农业大学硕士学位论文, 湖北武汉, 2011.

 Du X Q. Cloning and Function Analysis of GhKCS13 in Cotton Fiber. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2011 (in Chinese with English abstract).

[58] 闫飞林. 棉花纤维起始相关长链非编码RNA的功能鉴定. 华中农业大学硕士学位论文, 湖北武汉, 2019.

 Yan F L. The Functional Identification of Long non-coding RNA Related to Cotton Fiber Initial. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).

[59] Tan H Z, Tang B H, Sun M L, Yin Q L, Ma Y Z, Li J Y, Wang P C, Li Z H, Zhao G N, Wang M J, et al. Identification of new cotton fiber-quality QTL by multiple genomic analyses and development of markers for genomic breeding. Crop J, 2024, 12: 866–879.

[60] Wang M J, Qi Z Y, Thyssen G N, Naoumkina M, Jenkins J N, McCarty J C, Xiao Y J, Li J Y, Zhang X L, Fang D D. Genomic interrogation of a MAGIC population highlights genetic factors controlling fiber quality traits in cotton. Commun Biol, 2022, 5: 60–60.

[61] 李娜, 王鹏, 孔斌雪, 马靖福, 窦佳欣, 陈涛, 张沛沛, 刘媛, 杨德龙. 小麦品质性状QTL元分析及候选基因挖掘. 农业生物技术学报, 2024, 32: 11–25.

 Li N, Wang P, Kong B X, Ma J F, Dou J X, Chen T, Zhang P P, Liu Y, Yang D L. Meta-analysis of QTL and mining of candidate genes for quality traits in wheat (Triticum aestivum). J Agric Biotechnol, 2024, 32: 11–25 (in Chinese with English abstract).

[62] 邵晓宇, 宋希云, 潘顺祥, 赵美爱. 玉米穗粗性状的全基因组关联分析及QTL元分析. 植物生理学报, 2017, 53: 2091–2102.

 Shao X Y, Song X Y, Pan S X, Zhao M A. Genome-wide association study and Meta-QTL analysis of ear diameter trait in maize. Plant Physiol J, 2017, 53: 2091–2102 (in Chinese with English abstract).

[63] Xu S D, Pan Z Y, Yin F F, Yang Q Y, Lin Z X, Wen T W, Zhu L F, Zhang D W, Nie X H. Identification of candidate genes controlling fiber quality traits in upland cotton through integration of meta-QTL, significant SNP and transcriptomic data. J Cotton Res, 2020, 3: 34.

[64] 何永辉. 棉花钙调素与类钙调素基因家族表达分析及棉花纤维离子组测定. 华中农业大学硕士学位论文, 湖北武汉, 2015.

 He Y H. Expression Analysis of Calmodulin and Calmodulin-like Gene Family and Ionome Analysis of Cotton Fiber. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).

[65] Bao Y, Wei Y Y, Liu Y L, Gao J J, Cheng S, Liu G Q, You Q, Liu P, Lu Q W, Li P T, et al. Genome-wide chromatin accessibility landscape and dynamics of transcription factor networks during ovule and fiber development in cotton. BMC Biol, 2023, 21: 165.

[66] Olas J J, Apelt F, Annunziata M G, John S, Richard S I, Gupta S, Kragler F, Balazadeh S, Mueller-Roeber B. Primary carbohydrate metabolism genes participate in heat-stress memory at the shoot apical meristem of Arabidopsis thaliana. Mol Plant, 2021, 14: 15081524.

[67] Yu S H, Wu J X, Sun Y M, Zhu H F, Sun Q G, Zhao P C, Huang R S, Guo Z F. A calmodulin-like protein (CML10) interacts with cytosolic enzymes GSTU8 and FBA6 to regulate cold tolerance. Plant Physiol, 2022, 190: 1321–1333.

[68] Tian X H, Ji M Y, You J Q, Zhang Y Q, Lindsey K, Zhang X L, Tu L L, Wang M J. Synergistic interplay of redox homeostasis and polysaccharide synthesis promotes cotton fiber elongation. Plant J, 2024, 118: 405–422.

[1] 谢章书, 谢学方, 屠小菊, 刘爱玉, 董合忠, 周仲华. 植物激素对棉花蕾铃脱落的调控研究进展[J]. 作物学报, 2025, 51(1): 1-29.
[2] 辛明华, 秘雅迪, 王国平, 李小飞, 李亚兵, 董合林, 韩迎春, 冯璐. 行距配置和种植密度对棉花干物质生产及产量的影响[J]. 作物学报, 2025, 51(1): 221-232.
[3] 李超, 付小琼. 基于GYT双标图综合评价黄河流域中熟杂交棉花区域试验品种[J]. 作物学报, 2025, 51(1): 30-43.
[4] 艾莎, 李莎, 方治伟, 李论, 李甜甜, 高利芬, 陈利红, 肖华锋, 万人静, 闫多子, 武星廷, 彭海, 韩瑞玺, 周俊飞. 棉花MNP标记位点开发及其在DNA指纹图谱构建中的应用[J]. 作物学报, 2024, 50(9): 2267-2278.
[5] 李航, 刘丽, 黄乾, 刘文豪, 司爱君, 孔宪辉, 王旭文, 赵福相, 梅拥军, 余渝. 棉花种质资源萌发期耐盐性鉴定及筛选[J]. 作物学报, 2024, 50(5): 1147-1157.
[6] 乐愉, 王涛, 张献龙, 林忠旭. 陆地棉重组自交系再生能力和遗传转化效率筛选[J]. 作物学报, 2024, 50(5): 1172-1180.
[7] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[8] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[9] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[10] 尚红燕, 普静, 柯会锋, 谷淇深, 孙正文, 杨君, 王国宁, 张艳, 卢怀玉, 徐东永, 吴立强, 马峙英, 王省芬, 吴金华. 不同种植环境下国内外棉花种质资源的遗传多样性分析与评价[J]. 作物学报, 2024, 50(10): 2528-2537.
[11] 肖胜华, 董贤镘, 彭鑫, 李安子, 闭兆福, 廖铭静, 黄礼豪, 管倩倩, 胡琴, 朱龙付. 转录因子GhWRKY41促进水杨酸合成增强棉花对黄萎病菌的抗性[J]. 作物学报, 2024, 50(10): 2447-2457.
[12] 陈旭升, 赵亮, 狄佳春. 陆地棉抗虫与抗草甘膦基因的分子聚合及经济性状相关分析[J]. 作物学报, 2024, 50(10): 2637-2642.
[13] 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236.
[14] 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137.
[15] 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!