欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (10): 2637-2642.doi: 10.3724/SP.J.1006.2024.44028

• 研究简报 • 上一篇    下一篇

陆地棉抗虫与抗草甘膦基因的分子聚合及经济性状相关分析

陈旭升*(), 赵亮, 狄佳春   

  1. 江苏省农业科学院经济作物研究所, 江苏南京 210014
  • 收稿日期:2024-02-20 接受日期:2024-05-21 出版日期:2024-10-12 网络出版日期:2024-06-25
  • 通讯作者: *陈旭升, E-mail: njcxs@126.com
  • 基金资助:
    国家转基因生物新品种培育科技重大专项子课题“长江下游棉区高产高效转基因棉花新品种培育”项目(2016ZX08005001-008)

Molecular pyramiding of insect and glyphosate-resistant genes and correlation analysis on economic traits of the pyramided lines in upland cotton

CHEN Xu-Sheng*(), ZHAO Liang, DI Jia-Chun   

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2024-02-20 Accepted:2024-05-21 Published:2024-10-12 Published online:2024-06-25
  • Contact: *E-mail: njcxs@126.com
  • Supported by:
    National Mojar Project for Developing New GM Crops “High Yield and High Efficiency Transgenic Cotton Genetically Modified Organism in the Lower Reaches of the Yangtze River”(2016ZX08005001-008)

摘要:

培育抗棉铃虫兼抗草甘膦的棉花, 可以同步提高品种的抗虫与抗除草剂能力, 降低植棉的除虫、除草用工成本, 提升植棉综合经济效益。本研究利用自育的高产优质陆地棉品系、国产转Bt基因抗虫棉品系以及转GR79+GAT基因的抗草甘膦陆地棉品系为杂交亲本, 配置复交组合。在繁殖的复交分离群体后代, 通过在苗床喷洒0.2%草甘膦, 去除不抗草甘膦棉苗; 并在大田不防治棉铃虫的条件下, 筛选抗虫棉株。而后在实验室利用特异引物对抗虫基因与抗草甘膦基因进行分子跟踪检测, 将同时具有Bt基因与GR79+GAT基因的单株繁殖成株系, 经大田筛选获得9个抗虫兼抗草甘膦的优良品系。然后对育成品系进行产量比较试验, 结果显示, 其中品系BG-6不但实现了抗虫与抗草甘膦基因的聚合, 而且该品系的皮棉产量水平较高、纤维品质表现良好: 纤维长度达30.9 cm、比强度30.1 cN tex-1、马克隆值4.9。对产量性状与纤维品质性状相关分析显示, 只有衣分与棉纤维整齐度呈极显著负相关(r= -0.838**), 其他产量性状与纤维品质性状均不存在显著相关性。文章最后得出结论: 在复合杂交组合的分离后代, 通过在苗床喷洒草甘膦筛选抗性棉苗, 再结合大田不治虫筛选抗虫单株; 而后在室内对2种抗性基因进行PCR分子跟踪检测, 再在大田对产量性状与品质性状进行系统选育, 可实现抗虫与抗草甘膦基因以及高产与优质性状的多元聚合。

关键词: 陆地棉, Bt基因, GR79+GAT基因, 产量性状, 纤维品质, 相关分析

Abstract:

Breeding cotton with simultaneous resistance to cotton bollworm and glyphosate can enhance the ability of resistance to insects and herbicides, reduce pest control and herbicide costs, and improve comprehensive economic productivity in cotton production. In this study, a hybrid population was developed using self-bred high-yield and high-quality upland cotton, domestic transgenic Bt cotton lines, and GR79+GAT transgenic upland cotton lines as parental hybrids. Non-glyphosate-resistant cotton seedlings were eliminated by applying 0.2% glyphosate in the seedling beds, and cotton plants were screened for resistance to cotton bollworm under field conditions without pest control. Specific primers were used in the laboratory to track the insect-resistant and glyphosate-resistant genes, and individual plants carrying the Bt and GR79+GAT genes were propagated into plant lines. Nine lines exhibiting resistance to both insects and glyphosate were obtained through field screening. Subsequently, the economic traits of the selected lines were compared and analyzed. Among these lines, strain BG-6 demonstrated the combined presence of insect-resistant and glyphosate-resistant genes, as well as higher lint yield and fiber quality. The fiber length, specific strength, and micronaire value of BG-6 were 30.9 cm, 30.1 cN tex-1, and 4.9, respectively. Correlation analysis between yield traits and fiber quality traits revealed a negative correlation between lint percentage and uniformity index (r = -0.838**), but no significant correlation was observed between other yield traits and fiber quality traits. In conclusion, our study successfully selected resistant cotton seedlings through glyphosate spraying in the seedling beds, identified resistant cotton plants under field conditions without pest control, detected two resistance genes using PCR in the laboratory, and evaluated high-yield and high-quality traits in the field. By following this approach, we achieved the pyramiding of multiple traits, including insect resistance, glyphosate resistance, and high-yield and high-quality characteristics, in the segregated progeny of comprehensive hybrid combinations.

Key words: upland cotton, Bt gene, GR79+GAT gene, yield traits, fiber quality, correlation analysis

图1

Bt基因的PCR鉴定 M为marker; 泳道1~24为分离群体选育的单株。"

图2

GAT基因的PCR检测 M为marker; 泳道1~24为分离群体选育的单株。"

表1

抗虫兼抗草甘膦棉花新品系的产量性状"

品系编号
Strain number
株高
Plant height
(cm)
果枝台数
Fruit branch
单株铃数
Boll number
单铃重
Boll weight (g)
大样衣分
Lint
percentage
(%)
籽棉产量
Seed cotton yield
(kg hm-2)
皮棉产量
Lint yield
(kg hm-2)
BG-1 109.45 13.8 28.8 7.4 40.8 3275.0 1336.3
BG-2 96.70 12.2 29.0 6.8 44.6 3220.0 1436.8
BG-3 101.80 14.5 33.1 6.3 42.1 3135.0 1321.1
BG-4 104.70 13.9 28.9 7.1 41.4 2815.0 1165.0
BG-5 115.35 14.7 34.9 6.7 41.8 4015.0 1680.0
BG-6 109.10 14.7 31.6 6.8 42.4 3760.0 1593.7
BG-7 95.75 14.2 30.0 6.8 40.7 2585.0 1052.6
BG-8 95.95 14.9 29.4 6.9 41.5 2880.0 1195.0
BG-9 101.20 13.2 29.2 6.4 44.2 2340.0 1035.0
平均值Mean value 103.3±6.9 14.0±0.9 30.5±2.2 6.8±0.3 42.2±1.4 3113.9±535.0 1312.8±226.5
极小值Minimal value 95.80 12.2 28.8 6.3 40.7 2340.0 1035.0
极大值Maximum value 115.40 14.9 34.9 7.4 44.6 4015.0 1680.0
变异系数Coefficient of variation 6.67 6.14 7.08 4.99 3.29 17.18 17.25

表2

抗虫兼抗草甘膦陆地棉新品系的纤维品质"

品系编号
Strain number
长度
Fiber length
(mm)
整齐度
Uniformity index
(%)
比强度
Specific strength
(cN tex-1)
马克隆值Micronaire value 伸长率
Elongation rate
(%)
BG-1 29.7 85.5 29.4 4.9 6.6
BG-2 28.7 84.4 27.4 5.1 6.5
BG-3 30.1 85.0 28.2 5.0 6.6
BG-4 28.5 85.2 28.8 5.3 6.5
BG-5 29.5 85.0 28.3 5.1 6.5
BG-6 30.9 85.0 30.1 4.9 6.6
BG-7 29.3 85.0 29.2 4.9 6.5
BG-8 29.4 84.9 28.3 5.3 6.6
BG-9 29.0 84.7 28.1 5.4 6.6
平均值Mean value 29.5±0.7 84.9±0.3 28.6±0.8 5.1±0.2 6.6±0.1
极小值Minimal value 28.5 84.4 27.4 4.9 6.5
极大值Maximum value 30.9 85.5 30.1 5.4 6.6
变异系数Coefficient of variation 2.5 0.4 2.8 3.4 0.8

表3

各品系的产量性状与纤维品质性状的相关性"

性状
Trait
株高
Plant height
(cm)
果枝台数
Fruit branch
单株铃数
Boll number
单铃重
Boll weight
(g)
衣分
Lint
percentage
(%)
籽棉产量
Seed cotton yield
(kg hm-2)
皮棉产量
Lint yield
(kg hm-2)
长度 Fiber length (mm) 0.374 0.614 0.499 -0.175 -0.233 0.536 0.492
整齐度 Uniformity index (%) 0.545 0.579 0.098 0.521 -0.838** 0.187 0.029
断裂比强度Specific strength 0.400 0.537 0.021 0.413 -0.609 0.235 0.126
马克隆值Micronaire value -0.275 -0.152 -0.222 -0.270 0.365 -0.516 -0.458
伸长率Elongation rate (%) 0.029 0.279 -0.070 -0.160 0.026 -0.080 -0.087
[1] 郭三堆, 王远, 孙国清, 金石桥, 周焘, 孟志刚, 张锐. 中国转基因棉花研发应用二十年. 中国农业科学, 2015, 48: 3372-3387.
doi: 10.3864/j.issn.0578-1752.2015.17.005
Guo S D, Wang Y, Sun G Q, Jin S Q, Zhou T, Meng Z G, Zhang R. Twenty years of research and application of transgenic cotton in China. Sci Agric Sin, 2015, 48: 3372-3387 (in Chinese with English abstract).
[2] 郭三堆, 孙豹, 孟志刚, 张锐, 王远, 孙国清, 周焘. 转抗虫、抗除草剂基因棉花分子育种. 见: 中囯棉花学会2015年年会论文汇编, 2015. p 50.
Guo S D, Sun B, Meng Z G, Zhang R, Wang Y, Sun G Q, Zhou T. Molecular breeding of transgenic cotton with insect-resistant and herbicide-resistant genes. In: Chinese Cotton Society 2015 Annual Conference Papers Collection, 2015. p 50. (in Chinese).
[3] Liang C Z, Sun B, Meng Z G, Meng Z H, Wang Y, Sun G Q, Zhu T, Lu W, Zhang W, Malik W, Lin M, Zhang R, Guo S D. Co-expression of GR79 EPSPS and GAT yields herbicide-resistant cotton with low glyphosate residues. Plant Biotechnol J, 2017, 15: 1622-1629.
doi: 10.1111/pbi.12744 pmid: 28418615
[4] 陈旭升. 抗除草剂棉花研究进展. 江西农业学报, 2006, 18(1): 94-98.
Chen X S. Advance in research on cotton resistant to herbicides. Acta Agric Jiangxi, 2006, 18(1): 94-98 (in Chinese with English abstract).
[5] 李海强, 李号宾, 丁瑞丰, Ahtam U, 潘洪生, 徐遥, 王冬梅, 刘建. 转(Bt Cry1Ac + CP4 EPSPS)基因抗虫抗草甘膦棉花对草甘膦的耐受性研究. 环境昆虫学报, 2018, 40: 209-214.
Li H Q, Li H B, Ding R F, Ahtam U, Pan H S, Xu Y, Wang D M, Liu J. Effects of transgenic cotton expressing Bt Cry1Ac+ CP4EPSPS genes on glyphosate tolerance. J Environ Entomol, 2018, 40: 209-214 (in Chinese with English abstract).
[6] 周向阳, 赵亮, 狄佳春, 陈旭升. 2个抗虫棉的外源Bt基因分子鉴定及其染色体定位. 作物学报, 2019, 45: 1440-1445.
doi: 10.3724/SP.J.1006.2019.84167
Zhou X Y, Zhao L, Di J C, Chen X S. Molecular identification and chromosomal mapping of exogenous Bt gene in two insect- resistant cotton varieties. Acta Agron Sin, 2019, 45: 1440-1445 (in Chinese with English abstract).
[7] 赵龙飞, 赵亮, 狄佳春, 陈旭升. 陆地棉转GR79与GAT基因对草甘膦抗性的鉴定及其遗传规律分析. 江苏农业学报, 2019, 35: 531-536.
Zhao L F, Zhao L, Di J C, Chen X S. dentification and inheritance of glyphosate-resistant genes GR79 and GAT in upland cotton. Jiangsu J Agric Sci, 2019, 35: 531-536 (in Chinese with English abstract).
[8] Hanson W D. The breakup of initial linkage blocks under selected mating systems. Genetics, 1959, 44: 857-868.
doi: 10.1093/genetics/44.5.857 pmid: 17247864
[9] Miller P A, Rawlings J O. Breakup of initial linkage blocks through intermating in a cotton breeding population. Crop Sci, 1967, 7: 199-204.
[10] Meredith W R Jr, Bridge R R. Breakup of linkage blocks in cotton’ G. hirsutum L. Crop Sci, 1971, 11: 695-697.
[11] Culp T W, Harrell D C, Kerr T. Some genetic implications in the transfer of high fiber strength genes to upland cotton. Crop Sci, 1979, 19: 481-484.
[12] 匡猛, 杨伟华, 许红霞, 王延琴, 周大云, 冯新爱. 单粒棉花种子DNA快速提取方法. 分子植物育种, 2010, 8: 827-831.
Kuang M, Yang W H, Xu H X, Wang Y Q, Zhou D Y, Feng X A. A rapid method of DNA extraction from single cotton seed. Mol Plant Breed, 2010, 8: 827-831 (in Chinese with English abstract).
[13] 王奕海, 谢家建, 张永军, 王锡锋, 彭于发. 一种检测抗虫棉中不同Bt基因表达盒结构的PCR方法. 农业生物技术学报, 2009, 17: 914-919.
Wang Y H, Xie J J, Zhang Y J, Wang X F, Peng Y F. A PCR method to detect different Bt gene expression cassettes in transgenic Bt cotton. J Agric Biotechnol, 2009, 17: 914-919 (in Chinese with English abstract).
[14] 郭三堆, 孙豹, 张锐, 孟志刚, 孙国清, 林敏, 陆伟. 一种含有草甘膦抗性基因的表达载体及其应用. 中国专利: 201410204703.6, 2014-05-15.
Guo S D, Sun B, Zhang R, Meng Z G, Sun G Q, Lin M, Lu W. An expression vector containing glyphosate resistance gene and its application. Chinese patent: 201410204703.6, 2014-05-15 (in Chinese).
[15] 张军, 武耀廷, 郭旺珍, 张天真. 棉花微卫星标记的 PAGE/银染快速检测. 棉花学报, 2000, 12: 267-269.
Zhang J, Wu Y T, Guo W Z, Zhang T Z. Fast screening of microsatellite markers in cotton with PAGE/silver staining. Cotton Sci, 2000, 12: 267-269 (in Chinese with English abstract).
[16] Comai L, Facciotti D, Hiatt W R, Thompson G, Rose R E, Stalker D M. Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature, 1985, 317: 741-744.
[17] Comai L, Sen L, Stalker D. An altered AroA gene product confers resistance to the herbicide glyphosate. Science, 1983, 221: 370-371.
pmid: 17798892
[18] Pline W A, Wilcut J W, Duke S O, Edmisten K L, Wells R. Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.). J Agric Food Chem, 2002, 50: 506-512.
[19] Cerny R E, Bookout J T, CaJacob C A, Groat J R, Hart J L, Heck G R, Huber S A, Listello J, Martens A B, Oppenhuizen M E. Development and characterization of a cotton (Gossypium hirsutum L.) event with enhanced reproductive resistance to glyphosate. Crop Sci, 2010, 50: 1375-1384.
[20] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定. 作物学报, 2021, 47: 789-798.
doi: 10.3724/SP.J.1006.2021.04169
Li J H, Duan Q, Shi M T, Wu L M, Liu H, Lin Y J, Wu G B, Fan C C, Zhou Y M. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance. Acta Agron Sin, 2021, 47: 789-798 (in Chinese with English abstract).
[21] Barry G, Kishore G, Padgette S, Taylor M, Kolacz K, Weldon M, Re D, Fincher K, Hallas L. Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. Curr Top Plant Physiol, 1992, 7: 139-145.
[22] Castle L A, Siehl D L, Gorton R, Patten P A, Chen Y H, Bertain S, Cho H J, Duck N, Wong J, Liu D. Discovery and directed evolution of a glyphosate tolerance gene. Science, 2004, 304: 1151-1154.
doi: 10.1126/science.1096770 pmid: 15155947
[23] 赵福永, 谢龙旭, 田颖川, 徐培林. 抗草甘膦基因aroAM12及抗虫基因Bts1m的转基因棉株. 作物学报, 2005, 31: 108-113.
Zhao F Y, Xie L X, Tian Y C, Xu P L. Glyphosate-resistant and bollworm-resistant transgenic cotton plants with the aroAM12 and Bts1m genes. Acta Agron Sin, 2005, 31: 108-113 (in Chinese with English abstract).
[24] 陈旭升, 华国雄. 陆地棉高产优质育种选择策略:最佳籽指选择. 见:第三届全国青年遗传育种学术会文集. 北京: 中国农业科技出版社, 1994. pp 518-519.
Chen X S, Hua G X. Selection strategy of upland cotton breeding for high yield and quality:optimum seed index selection. In: Proceedings of the 3rd National Youth Genetic and Breeding Society. Beijing: China Agricultural Science and Technology Press, 1994. pp 518-519 (in Chinese).
[25] 易成新, 汪业春, 郭旺珍, 朱协飞, 张天真. 陆地棉分子标记辅助轮回选择聚合育种研究: IV. 纤维比强度选择效果及对其他品质性状的影响. 作物学报, 2004, 30: 680-685.
Yi C X, Wang Y C, Guo W Z, Zhu X F, Zhang T Z. Pyramid breeding by marker-assisted recurrent selection in upland cotton: IV. MAS efficiency for fiber strength and effects on other fiber qualities. Acta Agron Sin, 2004, 30: 680-685 (in Chinese with English abstract).
[26] 杨雪峰, 宋维富, 刘东军, 赵丽娟, 宋庆杰, 张春利, 辛文利, 肖志敏, 白光宇, 孙雪松, 王晓楠. Glu-D1dWx-B1b基因聚合在强筋小麦育种中的利用. 麦类作物学报, 2023, 43: 545-550.
Yang X F, Song W F, Liu D J, Zhao L J, Song Q J, Zhang C L, Xin W L, Xiao Z M, Bai G Y, Sun X S, Wang X N. Utilization of Glu-D1d and Wx-B1b gene pyramiding in strong gluten wheat breeding programmes. J Triticeae Crops, 2023, 43: 545-550 (in Chinese with English abstract).
[1] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
[2] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[3] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[4] 尚红燕, 普静, 柯会锋, 谷淇深, 孙正文, 杨君, 王国宁, 张艳, 卢怀玉, 徐东永, 吴立强, 马峙英, 王省芬, 吴金华. 不同种植环境下国内外棉花种质资源的遗传多样性分析与评价[J]. 作物学报, 2024, 50(10): 2528-2537.
[5] 刘韬奋, 罗单, 张启鹏, 孙圆圆, 李培松, 田景山, 张旺锋, 向导, 张亚黎, 杨明凤, 勾玲. 乙烯利催熟对机采棉铃重和纤维品质的影响[J]. 作物学报, 2024, 50(1): 209-218.
[6] 左春阳, 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲. 陆地棉漆酶基因家族成员表达模式分析[J]. 作物学报, 2023, 49(9): 2344-2361.
[7] 马春敏, 李维希, 李芳军, 田晓莉, 李召虎. 陆地棉硝酸盐转运体NRT基因家族鉴定及表达分析[J]. 作物学报, 2023, 49(6): 1496-1517.
[8] 孟璐, 杜明伟, 黎芳, 齐海坤, 路正营, 徐东永, 李存东, 张明才, 田晓莉, 李召虎. 冀中地区高密种植条件下棉花药前群体大小和成熟度与化学脱叶催熟效果的关系[J]. 作物学报, 2023, 49(4): 1028-1038.
[9] 郭宏, 于霁雯, 裴文锋, 关永虎, 李航, 李长喜, 刘金伟, 王伟, 王宝全, 梅拥军. 南疆陆地棉杂种F2的遗传分析及遗传主效聚类[J]. 作物学报, 2023, 49(3): 608-621.
[10] 朱继杰, 王士杰, 赵红霞, 贾晓昀, 李妙, 王国印. 田间条件下不同棉花品种叶片响应化学脱叶剂噻苯隆的转录组分析[J]. 作物学报, 2023, 49(10): 2705-2716.
[11] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[12] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[13] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[14] 田景山, 张煦怡, 王文敏, 杨延龙, 随龙龙, 张鹏鹏, 张亚黎, 张旺锋, 勾玲. 棉花脱叶催熟剂对纤维品质的影响及应用时间的确定[J]. 作物学报, 2020, 46(9): 1388-1397.
[15] 解松峰,吉万全,张耀元,张俊杰,胡卫国,李俊,王长有,张宏,陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3): 365-384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!