欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1496-1517.doi: 10.3724/SP.J.1006.2023.24159

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

陆地棉硝酸盐转运体NRT基因家族鉴定及表达分析

马春敏1(), 李维希2, 李芳军1, 田晓莉1,*(), 李召虎1   

  1. 1中国农业大学农学院作物化控研究中心, 北京 100193
    2南京农业大学作物遗传与种质创新国家重点实验室, 江苏南京 210095
  • 收稿日期:2022-07-10 接受日期:2022-10-10 出版日期:2023-06-12 网络出版日期:2022-10-24
  • 通讯作者: *田晓莉, E-mail: tianxl@cau.edu.cn
  • 作者简介:E-mail: lmjy611@126.com
  • 基金资助:
    国家转基因生物新品种培育重大专项(2011ZX08005-004-008)

Identification and expression analysis of nitrate transporter NRT gene family in upland cotton (Gossypium hirsutum L.)

MA Chun-Min1(), LI Wei-Xi2, LI Fang-Jun1, TIAN Xiao-Li1,*(), LI Zhao-Hu1   

  1. 1Crop Chemical Control Research Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    2State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2022-07-10 Accepted:2022-10-10 Published:2023-06-12 Published online:2022-10-24
  • Contact: *E-mail: tianxl@cau.edu.cn
  • Supported by:
    National Major Project for Developing New GM Crops(2011ZX08005-004-008)

摘要:

硝酸盐转运体(nitrate transporters, NRTs)在植物氮素吸收、利用和存储等过程中发挥着重要作用。本研究利用HMM软件和Blastp方法, 在陆地棉中, 鉴定出了106个GhNRT1/PTR (NPF) (Nitrate transporter 1 (NRT1)/Peptide Transporter (PTR) family (NPF))和14个GhNRT2 (Nitrate transporter 2 family)成员, 对它们的保守结构域、系统发育关系、理化性质、亚细胞定位、保守基序、基因结构、启动子区顺式作用元件和表达模式进行了分析。结果表明, GhNPF均具有典型的PTR2 (Peptide Transporter 2 family, 肽转运蛋白)结构域, 个别蛋白(GhNPF2.6bD、GhNPF4.1cA和GhNPF2.14aD)出现了2个PTR2和/或其他结构域, 表明棉花NPF进化保守性较低; GhNRT2具有典型的MFS_1 (Major Facilitator Superfamily, 主要促进子超家族)单域。多数GhNRTs定位于细胞质膜上, 为疏水性蛋白。系统发育分析显示GhNRTs可分为10个类群, 相同类群具有相似的基因结构及基序分布。顺式作用元件组成表明, 大部分GhNRTs的表达可能与植物激素、非生物胁迫和光反应等相关。此外, GhNPF不同亚类间的表达模式存在一定差异, 但同一亚类内不同成员的表达模式相对保守; GhNRT2基因则主要在根中高表达。盐胁迫处理后的转录组数据分析发现, 近1/5的GhNRTs基因表达量发生了显著上调或下调, 表明其可能参与棉花盐胁迫应答。选择6个GhNRTs基因检测其在根系、幼叶、功能叶和老叶中的表达对不同NO3-供应水平的响应发现, GhNPF6.3dAGhNPF7.3aA可能具有双亲和吸收NO3-的能力, GhNPF6.2bD则可能编码高亲和NO3-转运蛋白; 三者在功能叶和老叶中可能参与NO3-卸载。这些结果与拟南芥等植物中的报道不同。上述研究结果为进一步揭示棉花硝酸盐转运蛋白的功能提供了参考, 为解析棉花氮素吸收和利用机制提供了初步依据。

关键词: 陆地棉, 硝酸盐转运体, GhNPF, GhNRT2, 表达模式

Abstract:

Nitrate transporters (NRTs) play an important role in plant nitrogen absorption, utilization, and storage. In this study, 106 GhNRT1/PTR (NPF) (Nitrate transporter 1 (NRT1)/Peptide Transporter (PTR) family (NPF)) and 14 GhNRT2 (Nitrate transporter 2 family) were identified from Gossypium hirsutum L. (TM-1) by HMM software and Blastp method. The conserved domains, phylogenetic relationships, physicochemical properties, subcellular localization, conserved motifs, gene structure, promoter cis-acting elements, and expression patterns of these GhNRTs were analyzed. The results showed that GhNPF had a typical PTR2 (Peptide Transporter 2 family) domain. Two PTR2 and/or other domains were found in individual proteins (GhNPF2.6bD, GhNPF4.1cA, and GhNPF2.14aD), indicating that GhNPF was less evolutionarily conserved. The GhNRT2 had a typical MFS_1 (Major Facilitator Superfamily) domain. Most proteins were located on the cytoplasmic membrane with hydrophobic properties. Phylogenetic analysis showed that these GhNRTs could be divided into 10 groups, and the same group had similar gene structure and motif distribution. The composition of cis-acting elements indicated that the relative expression levels of most GhNRTs could be related to plant hormones, abiotic stress, and light response. In addition, the relative expression patterns of GhNPF were different among the diverse subgroups, but the relative expression patterns of different members in the same subgroup were mostly conserved. GhNRT2 genes were mainly expressed in roots. Moreover, the transcriptome data with salt stress treatment revealed that the relative levels of nearly 1/5 GhNRTs were significantly up-regulated or down-regulated, indicating that they probably function in response to salt stress. Six GhNRTs were selected to detect the response of their expression in roots, young leaves, functional leaves, and old leaves to different NO3- supply levels. The results showed that GhNPF6.3dA and GhNPF7.3aA may have the ability to absorb NO3- with dual affinity, while GhNPF6.2bD may encode high-affinity NO3- transporter. The three may be involved in NO3- unloading in functional leaves and old leaves. These results were different from those reported in plants such as Arabidopsis. In conclusion, the results provide a reference for further functional characterization of nitrate transporters and provide a preliminary basis for the mechanism analysis of nitrogen absorption and utilization in cotton.

Key words: Gossypium hirsutum L., nitrate transporters, GhNPF, GhNRT2, expression pattern

表1

RT-PCR引物序列"

基因名称
Gene name
引物序列
Primer sequence (5'-3')
GhActin9 F: GCCTTGGACTATGAGCAGGA R: AAGAGATGGCTGGAAGAGGA
GhNPF4.6cA F: CCAATCTTCTTCTTTGGCTCTGG R: AGAAGGGCTTGCAGAGAGGTTC
GhNPF6.1aA F: GCTGCCTTCAAGAAACGACA R: GAGTGCTGCCTTATCCAAGC
GhNPF6.2bD F: CTCTTGTGTTTGCTTGGTGGC R: AATGTGCCAGTCCCAAGTGT
GhNPF6.3dA F: CCCAAATCGCTGCAGTGTTT R: CGAAACTGCTTGCTGTGAGGC
GhNPF7.3aA F: GTTGAAGAGCAGAAGAAGGGAAC R: ACCTTGCTCAACGAATAGGGATG
GhNRT2.4aA F: CCAGTGGGGTAGCATGTTTC R: GCTTTCCACGCTCAGACCG

图1

陆地棉NRT蛋白与拟南芥NRT蛋白的系统发育关系 利用MEGA 7.0中的Clustal W比对陆地棉(120条)和拟南芥(60条)的NRT蛋白序列, 采用邻接法构建系统发育树。红色星表示陆地棉NRT, 绿色三角形表示拟南芥NRT。彩色圆点代表已被验证的AtNRTs的底物, 汇总每个亚族的主要底物构成外圆环。"

图2

陆地棉(A)、拟南芥(B) NRT蛋白保守结构域分析"

表2

陆地棉NRT蛋白的理化性质及亚细胞定位预测"

基因名称
Gene ID
分子质量
Molecular weight (kD)
等电点
pI
氨基酸数
Number of amino acids
亲水性
Grand average of hydropathicity
脂肪指数
Aliphatic index
不稳定系数Instability index 亚细胞定位
Subcellular localization
GhNPF1.1cD 63.711 9.13 579 0.352 101.93 43.69 plas
GhNPF1.2aA 66.070 8.65 603 0.342 100.15 46.12 plas
GhNPF2.6bA 107.252 8.60 982 0.521 114.58 35.36 plas
GhNPF2.6bD 122.915 9.21 1118 0.438 110.49 37.97 plas
GhNPF2.6aA 61.214 8.61 558 0.369 107.85 34.68 plas
GhNPF2.11aD 66.821 8.91 602 0.200 96.71 30.10 plas
GhNPF2.14aD 93.651 6.76 844 0.302 103.83 39.71 plas
GhNPF2.14bD 65.256 7.88 588 0.353 104.25 35.93 plas
GhNPF3.1dA 54.147 8.45 491 0.281 106.42 37.18 plas
GhNPF3.1aD 64.861 8.48 586 0.220 100.55 30.67 plas
GhNPF3.1cD 65.818 8.37 593 0.210 100.35 32.67 plas
GhNPF4.1aA 57.776 8.52 519 0.327 96.99 34.86 plas
GhNPF4.3bD 65.985 8.46 596 0.255 97.53 35.11 plas
GhNPF4.4aD 64.965 7.52 587 0.341 98.13 37.19 plas
GhNPF4.1cA 119.341 8.99 1078 0.362 102.18 29.89 plas
GhNPF4.6bD 64.247 9.16 582 0.339 102.94 43.31 plas
GhNPF4.6cD 63.787 8.54 580 0.356 101.43 42.33 plas
GhNPF4.6aA 56.049 9.33 511 0.448 102.90 39.84 plas
GhNPF4.7aA 57.238 8.89 519 0.385 97.17 42.30 plas
GhNPF5.2aD 66.315 9.16 594 0.243 98.15 28.95 plas
GhNPF5.4bD 63.908 9.06 578 0.274 102.04 30.58 plas
GhNPF5.7aD 66.067 8.60 594 0.276 106.72 35.40 plas
GhNPF5.9aA 60.359 7.86 542 0.367 101.62 37.62 plas
GhNPF5.10aA 62.338 8.76 571 0.411 104.31 34.02 plas
GhNPF5.10dA 64.148 9.22 579 0.149 91.16 36.18 plas
GhNPF6.1aA 70.503 8.91 634 0.290 99.54 39.06 plas
GhNPF6.2bD 63.343 9.33 582 0.375 98.04 29.66 plas
GhNPF6.3bA 64.680 8.91 586 0.317 105.00 35.83 plas
GhNPF6.4bA 65.734 8.95 595 0.277 106.00 24.31 plas
GhNPF7.1bA 65.353 5.96 598 0.315 99.60 26.46 plas
GhNPF7.2aD 66.711 6.47 600 0.216 94.93 27.77 plas
GhNPF7.3aA 66.570 6.24 599 0.207 95.73 29.23 plas
GhNPF8.1aA 63.838 8.60 569 0.200 96.98 23.26 plas
GhNPF8.2cA 64.192 7.89 576 0.152 93.18 21.88 plas
GhNPF8.3bA 64.679 5.97 584 0.248 93.89 30.46 plas
GhNRT2.4bD 57.456 9.31 530 0.345 87.28 41.81 plas
GhNRT2.4aA 57.526 8.82 532 0.331 88.05 41.58 plas
GhNRT2.3aD 57.938 9.21 536 0.392 86.51 32.60 plas
GhNRT2.2aA 56.878 8.59 526 0.319 87.60 35.91 plas
GhNRT2.5aD 54.632 9.15 506 0.457 94.68 38.68 plas

图3

陆地棉GhNRTs基因在染色体上的定位"

图4

陆地棉NRT蛋白的保守基序(左)和基因结构(右)"

图5

GhNRTs启动子区域的顺式调控元件分析"

图6

GhNRTs基因在棉花不同器官和组织中的表达水平 每个基因对应的FPKM数值log2标准化后绘制基因表达热图。DPA: 开花后天数。"

图7

不同转录组中的GhNRTs基因表达分析 使用每个基因对应的FPKM数值log2标准化后绘制基因表达热图。R1: 1 cm胚根根尖; R2: 三叶期5 cm侧根; R3: 三叶期2 cm侧根; R4: 三叶期幼根; L1: 二叶期幼叶; L2、L3: 三叶期幼叶; L4: 六叶期功能叶。"

图8

GhNRTs基因对200 mmol L-1 NaCl胁迫的响应 每个基因对应的FPKM数值log2标准化后绘制基因表达热图。R: 三叶期侧根2 cm; CK: 对照。"

图9

部分GhNRTs基因表达对供氮水平的响应 采用2-ΔΔCt算法计算基因的相对表达量。将C→S处理0 h根中GhNRT2.4aA的相对表达量设为1。C→S: 7.5 mmol L-1→0 mmol L-1 NO3-; L→C: 1.39 mmol L-1→7.5 mmol L-1 NO3-; L→C→S: 1.39 mmol L-1→7.5 mmol L-1→0 mmol L-1 NO3-; R: 根; YL: 幼叶; ML: 成熟叶/功能叶(倒四叶); OL: 老叶(第1~2叶)。柱上“*”表示各部位不同时间点之间差异达0.05显著水平。"

附表1

拟南芥和水稻中NRT转运体作用底物综述"

物种
Species
名称
Name
先前名称
Old name
基因名称
Gene ID
底物
Substrates
参考文献
Reference(s)
拟南芥
Arabidopsis thaliana
AtNPF1.1 NRT1.12 At3g16180 NO3- (oocyte); ABA, GA, JA-Ile (yeast) [1-2]
AtNPF1.2 NRT1.11 At1g52190 NO3- (oocyte); GA, JA-Ile (yeast) [1-2]
AtNPF2.3 At3g45680 NO3- (liposome); GA (yeast) [2-3]
AtNPF2.4 At3g45700 GA, JA-Ile (yeast); Cl- (oocyte) [2,4]
AtNPF2.5 At3g45710 ABA, GA (yeast); Cl- (oocyte, yeast) [2,5]
AtNPF2.6 At3g45660 GA, JA-Ile (yeast) [2]
AtNPF2.7 NAXT1 At3g45650 NO3- (liposome); GA, JA-Ile (yeast) [2,6]
AtNPF2.9 NRT1.9 At1g18880 NO3-, 4 MTB (oocyte) [7-8]
AtNPF2.10 GTR1 At3g47960 NO3-, GA, JA-Ile, 4 MTB, 8 MTO (oocyte); GA, JA-Ile (yeast) [2,7,9-11]
AtNPF2.11 GTR2 At5g62680 4 MTB, 8 MTO, NO3-, GA (oocyte) [7,9,11]
AtNPF2.12 NRT1.6 At1g27080 NO3- (oocyte); GA (yeast) [2,12]
AtNPF2.13 NRT1.7 At1g69870 NO3-, 4 MTB (oocyte); GA, JA-Ile (yeast) [2,7,13]
AtNPF2.14 At1g69860 4 MTB (oocyte) [7]
AtNPF3.1 Nitr At1g68570 NO3-, NO2-, GA (oocyte); GA, and JA-Ile (yeast) [2,14-15]
AtNPF4.1 AIT3 At3g25260 ABA, GA, JA-Ile (yeast); GA (oocyte) [2,11,16]
AtNPF4.2 AIT4 At3g25280 ABA, GA (yeast) [2,16]
AtNPF4.5 AIT2 At1g27040 ABA (yeast) [16]
AtNPF4.6 NRT1.2/AIT1 At1g69850 NO3- (oocyte); ABA (yeast, insect cell) [2,16-18]
AtNPF5.1 At2g40460 ABA, GA, JA-Ile (yeast) [2]
AtNPF5.2 PTR3 At5g46050 Dipeptides (yeast); ABA, GA (yeast) [2,19-20]
AtNPF5.3 At5g46040 ABA (yeast) [2]
AtNPF5.5 At2g38100 NO3- (oocyte) [21]
AtNPF5.6 At2g37900 GA (yeast) [2]
AtNPF5.7 At3g53960 ABA, GA, JA-Ile (yeast) [2]
AtNPF5.10 At1g22540 NO3- (oocyte) [21]
AtNPF5.11 At1g72130 NO3- (oocyte) [22]
AtNPF5.12 At1g72140 NO3- (oocyte) [22]
AtNPF5.16 At1g22550 NO3- (oocyte) [22]
AtNPF6.2 NRT1.4 At2g26690 NO3- (oocyte) [23]
AtNPF6.3 NRT1.1 At1g12110 NO3-,auxin (oocyte) [24-26]
AtNPF7.2 NRT1.8 At4g21680 NO3- (oocyte) [27]
AtNPF7.3 NRT1.5 At1g32450 NO3-,K+ (oocyte) [28-29]
AtNPF8.1 PTR1 At3g54140 Dipeptides (oocyte, yeast); JA-Ile (yeast) [2,30-32]
AtNPF8.2 PTR5 At5g01180 Dipeptides (oocyte, yeast); ABA, GA, JA-Ile (yeast) [2,31-32]
AtNPF8.3 PTR2 At2g02040 Dipeptides (yeast); Histidine [33-34]
AtNRT2.1 At1g08090 NO3- (oocyte) [35]
AtNRT2.2 At1g08100 NO3- (oocyte) [35]
AtNRT2.4 At5g60770 NO3- (oocyte) [35]
AtNRT2.5 At1g12940 NO3- (oocyte) [35]
AtNRT2.7 At5g14570 NO3- (oocyte) [35]
水稻
Oryza sativa
OsNPF2.2 OsPTR2 Os12g44100 NO3- (oocyte) [36]
OsNPF2.4 Os03g48180 NO3- (oocyte) [37]
OsNPF7.2 Os02g47090 NO3- (oocyte) [38]
OsNPF7.3 OsPTR6 Os04g50950 Dipeptide (yeast) [39]
OsNPF8.9 OsNRT1 Os03g13274 NO3- (oocyte) [40-41]
OsNRT2.3b Os01g50820 NO3- (oocyte) [42]
[1] Iqbal A, Dong Q, Wang X, Gui H, Zhang H, Zhang X, Song M. Transcriptome analysis reveals differences in key genes and pathways regulating carbon and nitrogen metabolism in cotton genotypes under N starvation and resupply. Int J Mol Sci, 2020, 21: 1500.
doi: 10.3390/ijms21041500
[2] Xu G H, Fan X R, Miller A J. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012, 63: 153-182.
doi: 10.1146/annurev-arplant-042811-105532 pmid: 22224450
[3] Wang Y Y, Cheng Y H, Chen K E, Tsay Y F. Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol, 2018, 69: 85-122.
doi: 10.1146/arplant.2018.69.issue-1
[4] Léran S, Varala K, Boyer J C, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong J M, Halkier B A, Harris J M, Hedrich R, Limami A M, Rentsch D, Seo M, Tsay Y F, Zhang M Y, Coruzzi G, Lacombe B. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci, 2014, 19: 5-9.
doi: 10.1016/j.tplants.2013.08.008 pmid: 24055139
[5] Wang H D, Wan Y F, Buchner P, King R, Ma H X, Hawkesford M J. Phylogeny and gene expression of the complete NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY in Triticum aestivum. J Exp Bot, 2020, 71: 4531-4546.
doi: 10.1093/jxb/eraa210
[6] Bai H, Euring D, Volmer K, Janz D, Polle A. The nitrate transporter (NRT) gene family in poplar. PLoS One, 2013, 8: e72126.
doi: 10.1371/journal.pone.0072126
[7] Tahir M M, Wang H, Ahmad B, Liu Y, Fan S, Li K, Lei C, Shah K, Li S H, Zhang D. Identification and characterization of NRT gene family reveals their critical response to nitrate regulation during adventitious root formation and development in apple rootstock. Sci Hortic, 2021, 275: 109642.
doi: 10.1016/j.scienta.2020.109642
[8] Wang X L, Cai X F, Xu C X, Wang Q H. Identification and characterization of the NPF, NRT2 and NRT3 in spinach. Plant Physiol Biochem, 2020, 158: 297-307.
doi: 10.1016/j.plaphy.2020.11.017
[9] Bouguyon E, Brun F, Meynard D, Kubes M, Pervent M, Léran S, Lacombe B, Krouk G, Guiderdoni E, Zazimalova E, Hoyerova K, Nacry P, Gojon A. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nat Plants, 2015, 1: 15015.
[10] Buchner P, Hawkesford M J. Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER1/ PEPTIDE TRANSPORTER family (NPF) in wheat. J Exp Bot, 2014, 65: 5697-5710.
doi: 10.1093/jxb/eru231 pmid: 24913625
[11] Fan X R, Naz M, Fan X R, Xuan W, Miller A J, Xu G H. Plant nitrate transporters: from gene function to application. J Exp Bot, 2017, 68: 2463-2475.
doi: 10.1093/jxb/erx011 pmid: 28158856
[12] Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet, 2015, 47: 834-838.
doi: 10.1038/ng.3337
[13] Huang N C, Liu K H, Lo H J, Tsay Y F. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell, 1999, 11: 1381-1392.
doi: 10.1105/tpc.11.8.1381 pmid: 10449574
[14] Segonzac C, Boyer J C, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R. Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter. Plant Cell, 2007, 19: 3760-3777.
doi: 10.1105/tpc.106.048173 pmid: 17993627
[15] Filleur S, Dorbe M F, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett, 2001, 489: 220-224.
doi: 10.1016/s0014-5793(01)02096-8 pmid: 11165253
[16] Gu C S, Zhang X X, Jiang J F, Guan Z Y, Zhao S, Fang W M, Liao Y, Chen S M, Chen F D. Chrysanthemum CmNAR2 interacts with CmNRT2 in the control of nitrate uptake. Sci Rep, 2014, 4: e5833.
[17] Barbier-Brygoo H, Angeli D A, Filleur S, Frachisse J M, Gambale F, Thomine S, Wege S. Anion channels/transporters in plants: from molecular bases to regulatory networks. Annu Rev Plant Biol, 2011, 62: 25-51.
doi: 10.1146/annurev-arplant-042110-103741 pmid: 21275645
[18] Lezhneva L, Kiba T, Feriabourrellier A B, Lafouge F, Boutet-Mercey S, Zoufan P, Sakakibara H, Daniel-Vedele F, Krapp A. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Plant J, 2014, 80: 230-241.
doi: 10.1111/tpj.12626
[19] Du X Q, Wang F L, Li H, Jing S, Yu M, Li J G, Wu W H, Kudla J, Wang Y. The transcription factor MYB59 regulates K+/NO3- translocation in the Arabidopsis response to low K+ stress. Plant Cell, 2019, 31: 699-714.
doi: 10.1105/tpc.18.00674
[20] Wang Y Y, Tsay Y F. Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport. Plant Cell, 2011, 23: 1945-1957.
doi: 10.1105/tpc.111.083618
[21] Xia X D, Fan X R, Wei J, Feng H M, Qu H Y, Xie D, Miller A J, Xu G H. Rice nitrate transporter OsNPF2.4 functions in low- affinity acquisition and long-distance transport. J Exp Bot, 2015, 66: 317-331.
doi: 10.1093/jxb/eru425
[22] Tang Z, Fan X R, Li Q, Feng H M, Miller A J, Shen Q R, Xu G H. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol, 2012, 160: 2052-2063.
doi: 10.1104/pp.112.204461 pmid: 23093362
[23] Hsu P K, Tsay Y F. Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth. Plant Physiol, 2013, 163: 844-856.
doi: 10.1104/pp.113.226563
[24] Chiu C C, Lin C S, Hsia A P, Su R C, Lin H L, Tsay Y F. Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol, 2004, 45: 1139-1148.
pmid: 15509836
[25] Fan S C, Lin C S, Hsu P K, Lin S H, Tsay Y F. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell, 2009, 21: 2750-2761.
doi: 10.1105/tpc.109.067603
[26] Almagro A, Lin S H, Tsay Y F. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell, 2008, 20: 3289-3299.
doi: 10.1105/tpc.107.056788 pmid: 19050168
[27] Léran S, Garg B, Boursiac Y, Corratgé-Faillie C, Brachet C, Tillard P, Gojon A, Lacombe B. AtNPF5.5, a nitrate transporter affecting nitrogen accumulation in Arabidopsis embryo. Sci Rep, 2015, 5: 7962.
doi: 10.1038/srep07962
[28] Bouguyon E, Perrine-Walker F, Pervent M, Rochette J, Cuesta C, Benkova E, Martinière A, Bach L, Krouk G, Gojon A, Nacry P. Nitrate controls root development through posttranscriptional regulation of the NRT1.1/NPF6.3 transporter/sensor. Plant Physiol, 2016, 172: 1237-1248.
pmid: 27543115
[29] Chen C Z, Lyu X F, Li J Y, Yi H Y, Gong J M. Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance. Plant Physiol, 2012, 159: 1582-1590.
doi: 10.1104/pp.112.199257
[30] Taochy C, Gaillard I, Ipotesi E, Oomen R, Leonhardt N, Zimmermann S, Peltier J B, Szponarski W, Simonneau T, Sentenac H, Gibrat R, Boyer J C. The Arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress. Plant J, 2015, 83: 466-479.
doi: 10.1111/tpj.2015.83.issue-3
[31] Li B, Byrt C, Qiu J, Baumann U, Hrmova M, Evrard A, Johnson A A, Birnbaum K D, Mayo G M, Jha D. Identification of a Stelar-localized transport protein that facilitates root-to-shoot transfer of chloride in Arabidopsis. Plant Physiol, 2016, 170: 1014-1029.
doi: 10.1104/pp.15.01163
[32] Li B, Qiu J, Jayakannan M, Xu B, Li Y, Mayo G M, Tester M, Gilliham M, Roy S J. AtNPF2.5 modulates chloride (Cl-) efflux from roots of Arabidopsis thaliana. Front Plant Sci, 2017, 7: 2013.
[33] Yang G, Tang H, Nie Y, Zhang X. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. Eur J Agron, 2011, 35: 164-170.
doi: 10.1016/j.eja.2011.06.001
[34] 储成才, 王毅, 王二涛. 植物氮磷钾养分高效利用研究现状与展望. 中国科学: 生命科学, 2021, 51: 1415-1423.
Chu C C, Wang Y, Wang E T. Improving the utilization efficiency of nitrogen, phosphorus and potassium: current situation and future perspectives. Sci Sin (Vitae), 2021, 51: 1415-1423. (in Chinese with English abstract)
[35] 孙伊辰. 棉花吸收利用氮素的生理及分子机制研究. 中国农业大学硕士学位论文, 北京, 2019.
Sun Y C. Investigation of Physiological and Molecular Mechanisms of Nitrogen Uptake and Utilization in Cotton Plant. MS Thesis of China Agricultural University, Beijing, China, 2019. (in Chinese with English abstract)
[36] 高美美. GhNRT2.5基因在棉花低氮胁迫反应中的功能分析. 西南大学硕士学位论文, 重庆, 2020.
Gao M M. Function Analysis of GhNRT2.5 in Cotton Response to Low Nitrogen Stress. MS Thesis of Southwest University, Chongqing, China, 2020. (in Chinese with English abstract)
[37] Subramanian B, Gao S, Lercher M J, Hu S, Chen W H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res, 2019, 2: 270-275.
[38] Wilkins M R, Gasteiger E, Bairoch A, Sanchez J C, Williams K L, Appel R D, Hochstrasser D F. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol, 1999, 112: 531-552.
pmid: 10027275
[39] Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams- Collier C J, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: 585-587.
pmid: 17517783
[40] Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77-78.
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[41] Bailey T L, Williams N, Misleh C, Li W W. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res, 2006, 34: 369-373.
pmid: 16845028
[42] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed forinteractive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009
[43] An J, Hu P G, Li F J, Wu H H, Shen Y, White J C, Tian X L, Li Z H, Giraldo J P. Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environ Sci Nano, 2020, 7: 2214-2228.
doi: 10.1039/D0EN00387E
[44] Yang D D, Li F J, Yi F, Eneji A E, Tian X L, Li Z H. Transcriptome analysis unravels key factors involved in response to potassium deficiency and feedback regulation of K+ uptake in cotton roots. Int J Mol Sci, 2021, 22: 3133.
doi: 10.3390/ijms22063133
[45] Li F J, Wu Q, Liao B P, Yu K K, Huo Y N, Meng L, Wang S M, Wang B M, Du M W, Tian X L, Li Z H. Thidiazuron promotes leaf abscission by regulating the crosstalk complexities between ethylene, auxin, and cytokinin in cotton. Int J Mol Sci, 2022, 23: 2696.
doi: 10.3390/ijms23052696
[46] Hoagland D R, Arnon D I. The water-culture method for growing plants without soil. Cali Agric Exp Sta, 1950, 357: 1-39.
[47] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Met, 2001, 25: 402-408.
[48] 袁丁. 5种木本植物 NRT2 基因家族的生物信息学分析与分子进化研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2012.
Yuan D. Bioinformatical Analysis and Molecular Evolutionary Investigation of NRT2 Gene Family in 5 Woody Plants. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2012. (in Chinese with English abstract)
[49] Kiba T, Feria-Bourrellier A B, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Bréhaut V, Miller A, Daniel-Vedele F, Sakakibara H, Krapp A. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell, 2012, 24: 245-258.
doi: 10.1105/tpc.111.092221
[50] Chopin F, Orsel M, Dorbe M F, Chardon F, Truong H N, Miller A J, Krapp A, Daniel-Vedele F. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell, 2007, 19: 1590-1602.
doi: 10.1105/tpc.107.050542
[51] Wang W, Hu B, Yuan D Y, Liu Y Q, Che R H, Hu Y C, Ou S J, Liu Y X, Zhang Z H, Wang H R, Li H, Jiang Z M, Zhang Z L, Gao X K, Qiu Y H, Meng X B, Liu Y X, Bai Y, Liang Y, Wang Y Q, Zhang L H, Li L G, Sodmergen, Jing H C, Li J Y, Chu C C. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell, 2018, 30: 638-651.
doi: 10.1105/tpc.17.00809
[52] Zhao F J, McGrath S P, Meharg A A. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol, 2010, 61: 535-559.
doi: 10.1146/arplant.2010.61.issue-1
[53] Wen J, Li P F, Ran F, Guo P C, Zhu J T, Yang J, Zhang L L, Chen P, Li J N, Du H. Genome-wide characterization, expression analyses, and functional prediction of the NPF family in Brassica napus. BMC Genomics, 2020, 21: 871.
doi: 10.1186/s12864-020-07274-7
[54] Wang Q, Liu C H, Dong Q L, Huang D, Li C Y, Li P M, Ma F W. Genome-wide identification and analysis of apple NITRATE TRANSPORTER 1/PEPTIDETRANSPORTER family (NPF) genes reveals MdNPF6.5 confers high capacity for nitrogen uptake under low-nitrogen conditions. Int J Mol Sci, 2018, 19: 2761.
doi: 10.3390/ijms19092761
[55] Steiner H Y, Naider F, Becker J M. The PTR family: a new group of peptide transporters. Mol Microbiol, 1995, 16: 825-834.
pmid: 7476181
[56] Zhang G B, Yi H Y, Gong J M. The Arabidopsis ethylene/ jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation. Plant Cell, 2014, 26: 3984-3998.
doi: 10.1105/tpc.114.129296
[57] Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci USA, 2012, 109: 9653-9658.
doi: 10.1073/pnas.1203567109 pmid: 22645333
[58] Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, Kamiya Y, Seo M. Identification of Arabidopsis NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. J Plant Res, 2015, 128: 679-686.
doi: 10.1007/s10265-015-0710-2
[59] Wen Z, Tyerman S D, Dechorgnat J, Ovchinnikova E, Dhugga K, Kaiser B N. Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride. Plant Cell, 2017, 29: 2581-2596.
doi: 10.1105/tpc.16.00724
[60] Krouk G, Lacombe B, Bielach A. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell, 2010, 18: 927-937.
doi: 10.1016/j.devcel.2010.05.008 pmid: 20627075
[61] Zhang L, Ma H J, Chen T T, Pen J, Yu S X, Zhao X H. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One, 2014, 9: e112807.
[62] 汪芳珍. 荒漠植物沙芥NAXT家族基因的克隆及其成员PcNPF2.7的功能分析. 兰州大学硕士学位论文, 甘肃兰州, 2021.
Wang F Z. Cloning of NAXT Homologous Genes and Functional Analysis of One Member PcNPF2.7 in the Xerophyte Pugionium cornutum. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2021. (in Chinese with English abstract)
[63] Goel P, Singh A K. Abiotic stresses downregulate key genes involved in nitrogen uptake and assimilation in Brassica juncea L. PLoS One, 2015, 10: e0143645.
[64] Liu K H, Huang C Y, Tsay Y F. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell, 1999, 11: 865-874.
doi: 10.1105/tpc.11.5.865 pmid: 10330471
[65] Léran S, Muños S, Brachet C, Tillard P, Gojon A, Lacombe B. Arabidopsis NRT1.1 is a bidirectional transporter involved in root-to-shoot nitrate translocation. Mol Plant, 2013, 6: 1984-1987.
doi: 10.1093/mp/sst068
[66] Okamoto M, Vidmar J J, Glass A D M. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol, 2003, 44: 304-317
doi: 10.1093/pcp/pcg036 pmid: 12668777
[67] Lin S H, Kuo H F, Canivenc G, Lin C S, Lepetit M, Hsu P K, Tillard P, Lin H L, Wang Y Y, Tsai C B, Gojon A, Tsay Y F. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell, 2008, 20: 2514-2528.
doi: 10.1105/tpc.108.060244
[68] Sakuraba Y, Chaganzhana, Mabuchi A, Iba K, Yanagisawa S. Enhanced NRT1.1/NPF6.3 expression in shoots improves growth under nitrogen deficiency stress in Arabidopsis. Commun Biol, 2021, 4: 256.
doi: 10.1038/s42003-021-01775-1
[69] Tang W, Ye J, Yao X M, Zhao P Z, Xuan W, Tian Y L, Zhang Y Y, Xu S, An H Z, Chen G M, Yu J, Wu W, Ge Y W, Liu X L, Li J, Zhang H Z, Zhao Y Q, Yang B, Jiang X Z, Peng C, Zhou C, Terzaghi W, Wang C M, Wan J M. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun, 2019, 10: 5279.
doi: 10.1038/s41467-019-13187-1 pmid: 31754193
[70] Wittkopp P J, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet, 2012, 13: 59-69.
[1] 郭宏, 于霁雯, 裴文锋, 关永虎, 李航, 李长喜, 刘金伟, 王伟, 王宝全, 梅拥军. 南疆陆地棉杂种F2的遗传分析及遗传主效聚类[J]. 作物学报, 2023, 49(3): 608-621.
[2] 杨佳宝, 张展, 周至铭, 吕新华, 孙黎. 向日葵HaLACS9基因的克隆与功能分析[J]. 作物学报, 2023, 49(2): 426-437.
[3] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[4] 马骊, 白静, 赵玉红, 孙柏林, 侯献飞, 方彦, 王旺田, 蒲媛媛, 刘丽君, 徐佳, 陶肖蕾, 孙万仓, 武军艳. 冷胁迫下甘蓝型冬油菜表达蛋白及BnGSTs基因家族的鉴定与分析[J]. 作物学报, 2023, 49(1): 153-166.
[5] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[9] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[10] 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089.
[11] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[12] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[13] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[14] 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51.
[15] 王慧敏,李新国,万书波,张智猛,丁红,李国卫,高文伟,彭振英. 花生膜联蛋白基因家族成员的结构和表达分析[J]. 作物学报, 2019, 45(3): 390-400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .