作物学报 ›› 2025, Vol. 51 ›› Issue (4): 969-981.doi: 10.3724/SP.J.1006.2025.44158
林伟津1,2(), 郭泽佳1,2, 刘浩1, 李海芬1, 王润风1, 黄璐1, 余倩霞1, 陈小平1, 洪彦彬1, 李少雄1,*(
), 鲁清1,*(
)
LIN Wei-Jin1,2(), GUO Ze-Jia1,2, LIU Hao1, LI Hai-Fen1, WANG Run-Feng1, HUANG Lu1, YU Qian-Xia1, CHEN Xiao-Ping1, HONG Yan-Bin1, LI Shao-Xiong1,*(
), LU Qing1,*(
)
摘要:
花生(Arachis hypogaea L.)是我国重要的经济作物和油料作物, 其荚果大小与单株产量紧密联系, 是重要的农艺性状。本研究以大果地方品种“东莞半蔓(DB)”和小果材料“ZLA”杂交构建的RIL群体为材料, 利用花生10K液相芯片构建高密度遗传图谱, 结合4个种植环境下的荚果大小(荚果长、荚果宽、荚果厚和百果重)相关性状进行QTL定位。总共检测到30个QTL, 分布在A01、A03、A05、A06、A07、A08、B02、B04、B06和B10等10条染色体上, LOD值为4.04~34.17, 贡献率为3.10%~33.52%, 加性效应为-2.43~16.64。检测到13个与荚果长、荚果宽、荚果厚和百果重有关的主效QTL, LOD值为4.41~34.17, 贡献率为11.21%~33.52%。在这些主效QTL中, qPLA07在4个种植环境下均被稳定检测到, qPWA08.1、qPWB02、qPTB06在3个种植环境下均被稳定检测到。另外, 检测到14对上位性QTL, LOD值为5.07~6.67, PVE为4.21%~21.84%。对qPWA08.1、qPWB02、qPTB06定位区间内的基因进行了KEGG代谢通路富集, 结合基因功能注释和花生不同组织中基因表达分析, 预测了4个候选基因, 分别是Ahy_A08g039622、Ahy_B02g057642、Ahy_B06g085859和Ahy_B06g085890。该研究结果有望为花生荚果产量关键基因挖掘和分子标记开发提供参考。
[1] | Akram N A, Shafiq F, Ashraf M. Peanut (Arachis hypogaea L.): a prospective legume crop to offer multiple health benefits under changing climate. Compr Rev Food Sci Food Saf, 2018, 17: 1325-1338. |
[2] | 杨瑶, 冯健, 吴传云. 我国花生生产面临的问题及机械化措施建议. 农机科技推广, 2021, (11): 24-26. |
Yang Y, Feng J, Wu C Y. Problems faced by peanut production in China and suggestions on mechanization measures. Agric Mach Technol Ext, 2021, (11): 24-26 (in Chinese). | |
[3] |
李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析. 作物学报, 2023, 49: 2160-2170.
doi: 10.3724/SP.J.1006.2023.24190 |
Li X, Yang H, Luo L, Li H D, Zhang K, Zhang X R, Li Y Y, Yu H Y, Wang T Y, Liu J Q, Wang Y, Liu F Z, Wan Y S. QTL mapping analysis of single kernel weight of cultivated peanut. Acta Agron Sin, 2023, 49: 2160-2170 (in Chinese with English abstract). | |
[4] | 向道权, 曹海河, 曹永国, 杨俊品, 黄烈健, 王守才, 戴景瑞. 玉米SSR遗传图谱的构建及产量性状基因定位. 遗传学报, 2001, 28: 778-784. |
Xiang D Q, Cao H H, Cao Y G, Yang J P, Huang L J, Wang S C, Dai J R. Construction of a genetic map and location of quantitative trait loci for yield component traits in maize by SSR markers. Acta Genet Sin, 2001, 28: 778-784 (in Chinese with English abstract). | |
[5] |
孟鑫浩, 张靖男, 崔顺立, Chen C Y, 穆国俊, 侯名语, 杨鑫雷, 刘立峰. 花生荚果与种子相关性状QTL定位及与环境互作分析. 作物学报, 2021, 47: 1874-1890.
doi: 10.3724/SP.J.1006.2021.04216 |
Meng X H, Zhang J N, Cui S L, Chen C Y, Mu G J, Hou M Y, Yang X L, Liu L F. QTL mapping and QTL × Environment interaction analysis of pod and seed related traits in cultivated peanut (Arachis hypogaea L.). Acta Agron Sin, 2021, 47: 1874-1890 (in Chinese with English abstract). | |
[6] | 杨强. 花生高密度遗传连锁图谱构建及荚果大小相关性状QTL定位. 福建农林大学硕士学位论文, 福建福州, 2018. |
Yang Q. Construction of High-Density Genetic Linkage Map and QTL Mapping of Pod Size-Related Traits in Peanut. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2018 (in Chinese with English abstract). | |
[7] |
Huang L, He H Y, Chen W G, Ren X P, Chen Y N, Zhou X J, Xia Y L, Wang X L, Jiang X G, Liao B S, et al. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015, 128: 1103-1115.
doi: 10.1007/s00122-015-2493-1 pmid: 25805315 |
[8] |
李振动, 李新平, 黄莉, 任小平, 陈玉宁, 周小静, 廖伯寿, 姜慧芳. 栽培种花生荚果大小相关性状QTL定位. 作物学报, 2015, 41: 1313-1323.
doi: 10.3724/SP.J.1006.2015.01313 |
Li Z D, Li X P, Huang L, Ren X P, Chen Y N, Zhou X J, Liao B S, Jiang H F. Mapping of QTLs for pod size related traits in cultivated peanut (Arachis hypogaea L.). Acta Agron Sin, 2015, 41: 1313-1323 (in Chinese with English abstract). | |
[9] | Luo H Y, Ren X P, Li Z D, Xu Z J, Li X P, Huang L, Zhou X J, Chen Y N, Chen W G, Lei Y, et al. Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A 05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2017, 18: 58. |
[10] |
Wang Z H, Huai D X, Zhang Z H, Cheng K, Kang Y P, Wan L Y, Yan L Y, Jiang H F, Lei Y, Liao B S. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci, 2018, 9: 827.
doi: 10.3389/fpls.2018.00827 pmid: 29997635 |
[11] |
Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, et al. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012, 12: 80.
doi: 10.1186/1471-2229-12-80 pmid: 22672714 |
[12] |
Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001 |
[13] |
Huerta-Cepas J, Forslund K, Coelho L P, Szklarczyk D, Jensen L J, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol, 2017, 34: 2115-2122.
doi: 10.1093/molbev/msx148 pmid: 28460117 |
[14] | Xia T M, Xiao D, Liu D, Chai W T, Gong Q Q, Wang N N. Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis. PLoS One, 2012, 7: e37217. |
[15] |
Samakovli D, Roka L, Dimopoulou A, Plitsi P K, Žukauskait A, Georgopoulou P, Novák O, Milioni D, Hatzopoulos P. HSP 90 affects root growth in Arabidopsis by regulating the polar distribution of PIN1. New Phytol, 2021, 231: 1814-1831.
doi: 10.1111/nph.17528 pmid: 34086995 |
[16] | 张文利, 沈文飚, 叶茂炳, 徐朗莱. 植物顺乌头酸酶及其生理功能. 植物生理学通讯, 2003, 39: 391-398. |
Zhang W L, Shen W B, Ye M B, Xu L L. Aconitase and its physiological roles in plants. Plant Physiol Commun, 2003, 39: 391-398 (in Chinese with English abstract). | |
[17] | Mohanta T K, Yadav D, Khan A L, Hashem A, Abd Allah E F, Al-Harrasi A. Molecular players of EF-hand containing calcium signaling event in plants. Int J Mol Sci, 2019, 20: 1476. |
[18] | 杨洪强, 接玉玲. 植物MAPK及其在病原信号传递中的作用. 植物病理学报, 2003, 33: 8-13. |
Yang H Q, Jie Y L. The plant MAPK and its function in pathogen signaling cascades. Acta Phytopathol Sin, 2003, 33: 8-13 (in Chinese with English abstract). | |
[19] | Alvarez J, Smyth D R. CRABS CLAW and SPATULA genes regulate growth and pattern formation during gynoecium development in Arabidopsis thaliana. Int J Plant Sci, 2002, 163: 17-41. |
[20] | Gremski K, Ditta G, Yanofsky M F. The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development, 2007, 134: 3593-3601. |
[21] | Kim J, Jung J H, Lee S B, Go Y S, Kim H J, Cahoon R, Markham J E, Cahoon E B, Suh M C. Arabidopsis 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol, 2013, 162: 567-580. |
[22] | Meng L S, Wang Z B, Yao S Q, Liu A Z. The ARF2-ANT- COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought in Arabidopsis. J Cell Sci, 2015, 128: 3922-3932. |
[23] | Jung J H, Barbosa A D, Hutin S, Kumita J R, Gao M J, Derwort D, Silva C S, Lai X L, Pierre E, Geng F, et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature, 2020, 585: 256-260. |
[24] | 马纳纳. 白木香结香转录组分析及其聚酮环化酶AsPKC1功能的初步验证. 海南大学硕士学位论文, 海南海口, 2020. |
Ma N N. Transcriptome Analysis of Aquilaria Sinensis and Preliminary Verification of Its Polyketide Cyclase AsPKC1 Function. MS Thesis of Hainan University, Haikou, Hainan, China, 2020 (in Chinese with English abstract). | |
[25] | 王亚琦. 花生荚果大小性状的遗传解析及候选基因挖掘. 沈阳农业大学博士学位论文, 辽宁沈阳, 2022. |
Wang Y Q. Genetic Analysis and Candidate Gene Mining of Peanut Pod Size Traits. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2022 (in Chinese with English abstract). | |
[26] | Lu Q, Liu H, Hong Y B, Li H F, Liu H Y, Li X Y, Wen S J, Zhou G Y, Li S X, Chen X P, Liang X Q. Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.). BMC Genomics, 2018, 19: 887. |
[27] | Chen Y N, Ren X P, Zheng Y L, Zhou X J, Huang L, Yan L Y, Jiao Y Q, Chen W G, Huang S M, Wan L Y, et al. Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG 6375 of peanut (Arachis hypogaea L.). Mol Breed, 2017, 37: 17. |
[28] | Lu Q, Huang L, Liu H, Garg V, Gangurde S S, Li H F, Chitikineni A, Guo D D, Pandey M K, Li S X, et al. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat Genet, 2024, 56: 530-540. |
[29] | 黄莉. 花生种子大小相关性状及基因表达QTL定位分析. 华中农业大学博士学位论文, 湖北武汉, 2019. |
Huang L. QTL Mapping Analysis of Peanut Seed Size-Related Traits and Gene Expression. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract). | |
[30] |
曾新颖, 郭建斌, 赵姣姣, 陈伟刚, 邱西克, 黄莉, 罗怀勇, 周晓静, 姜慧芳, 黄家权. 花生籽仁大小相关性状QTL定位. 作物学报, 2019, 45: 1200-1207.
doi: 10.3724/SP.J.1006.2019.84173 |
Zeng X Y, Guo J B, Zhao J J, Chen W G, Qiu X K, Huang L, Luo H Y, Zhou X J, Jiang H F, Huang J Q. Identification of QTL related to seed size in peanut (Arachis hypogaea L.). Acta Agron Sin, 2019, 45: 1200-1207 (in Chinese with English abstract). | |
[31] |
Li L, Yang X L, Cui S L, Meng X H, Mu G J, Hou M Y, He M J, Zhang H, Liu L F, Chen C Y. Construction of high-density genetic map and mapping quantitative trait loci for growth habit- related traits of peanut (Arachis hypogaea L.). Front Plant Sci, 2019, 10: 745.
doi: 10.3389/fpls.2019.00745 pmid: 31263472 |
[32] |
Liu Y Y, Shao L B, Zhou J, Li R C, Pandey M K, Han Y, Cui F, Zhang J L, Guo F, Chen J, et al. Genomic insights into the genetic signatures of selection and seed trait loci in cultivated peanut. J Adv Res, 2022, 42: 237-248.
doi: 10.1016/j.jare.2022.01.016 pmid: 36513415 |
[33] | Park C J, Seo Y S. Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol J, 2015, 31: 323-333. |
[34] |
Xia H, Zhao C Z, Hou L, Li A Q, Zhao S Z, Bi Y P, An J, Zhao Y X, Wan S B, Wang X J. Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genomics, 2013, 14: 517.
doi: 10.1186/1471-2164-14-517 pmid: 23895441 |
[35] |
Zhao C Z, Zhao S Z, Hou L, Xia H, Wang J S, Li C S, Li A Q, Li T T, Zhang X Y, Wang X J. Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages. BMC Plant Biol, 2015, 15: 188.
doi: 10.1186/s12870-015-0582-6 pmid: 26239120 |
[36] | 刘霞. 花生花针期生长素的运输与分布及相关基因表达分析. 湖南农业大学博士学位论文, 湖南长沙, 2010. |
Liu X. Transport and Distribution of Auxin and Analysis of Related Gene Expression in Peanut at Flowering Stage. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2010 (in Chinese with English abstract). | |
[37] | Gao C, Sun J L, Wang C Q, Dong Y M, Xiao S H, Wang X J, Jiao Z G. Genome-wide analysis of basic/helix-loop-helix gene family in peanut and assessment of its roles in pod development. PLoS One, 2017, 12: e0181843. |
[38] | 郭永华, 郭护团, 李君, 张启华. 渭北旱原花生开花规律及对结实性的影响. 陕西农业科学, 2002, 48(7): 8-19. |
Guo Y H, Guo H T, Li J, Zhang Q H. Regularity of flowering and its effects on the bearing habit of peanut in the north arid plateau of Weihe river. Shaanxi J Agric Sci, 2002, 48(7): 8-19 (in Chinese). |
[1] | 迟晓元, 毕竞男, 赵健鑫, 陈娜, 潘丽娟, 姜骁, 殷祥贞, 赵旭红, 马俊卿, 许静. 花生荚果力学特性评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(4): 943-957. |
[2] | 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585. |
[3] | 晋高锐, 吴小丽, 邓丽, 陈玉宁, 喻博伦, 郭建斌, 丁膺宾, 刘念, 罗怀勇, 陈伟刚, 黄莉, 周小静, 淮东欣, 谭家壮, 姜慧芳, 任丽, 雷永, 廖伯寿. 兼抗黄曲霉侵染和产毒高油酸花生新种质的创制与评价[J]. 作物学报, 2025, 51(3): 687-895. |
[4] | 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811. |
[5] | 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556. |
[6] | 雍瑞, 胡文静, 吴迪, 汪尊杰, 李东升, 赵蝶, 尤俊超, 肖永贵, 王春平. 小麦穗粒数QTL分析及其对千粒重多效性评价[J]. 作物学报, 2025, 51(2): 312-323. |
[7] | 胡朋举, 郭颂, 宋亚辉, 金欣欣, 苏俏, 杨永庆, 王瑾. 多环境下花生含油量遗传及QTL定位分析[J]. 作物学报, 2025, 51(2): 324-333. |
[8] | 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394. |
[9] | 王润风, 李文佳, 廖泳俊, 鲁清, 刘浩, 李海芬, 李少雄, 梁炫强, 洪彦彬, 陈小平. 花生核心种质资源荚果成熟度评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(2): 395-404. |
[10] | 杨景发, 余鑫莲, 姚有华, 姚晓华, 王蕾, 吴昆仑, 李新. 青稞分蘖角度的QTL定位[J]. 作物学报, 2025, 51(1): 260-272. |
[11] | 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296. |
[12] | 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166. |
[13] | 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121. |
[14] | 韩丽, 汤胜胜, 李佳, 胡海斌, 刘龙龙, 吴斌. 燕麦SNP高密度遗传图谱构建及β-葡聚糖含量QTL定位[J]. 作物学报, 2024, 50(7): 1710-1718. |
[15] | 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683. |
|