欢迎访问作物学报,今天是

作物学报

• •    

转基因大豆结合免耕平作实现东北地区大豆生产轻简化

李威1,**,朱玉鹏1,**,孙宾成2,温有祥3,吴宗声1,徐一帆1,宋雯雯1,*,徐彩龙1,*,吴存祥1,*   

  1. 1 中国农业科学院作物科学研究所 / 国家大豆产业技术研发中心, 北京 100081; 2 呼伦贝尔市农牧科学研究院, 内蒙古呼伦贝尔 021000; 3 扎兰屯市农牧业技术推广中心, 内蒙古呼伦贝尔 162650
  • 收稿日期:2025-03-27 修回日期:2025-07-09 接受日期:2025-07-09 网络出版日期:2025-07-16
  • 基金资助:
    本研究由国家重点研发计划项目(2023YFE0105000),中国农业科学院科技创新工程和财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-04)资助。

Transgenic soybean combined with no-tillage flat planting promotes the simplification of soybean production in Northeast China

LI Wei1,**,ZHU Yu-Peng1,**,SUN Bin-Cheng2,WEN You-Xiang3,WU Zong-Sheng1,XU Yi-Fan1,SONG Wen-Wen1,*,XU Cai-Long1,*,WU Cun-Xiang1,*   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Soybean Industrial Technology R & D Center, Beijing 100081, China; 2 Hulunbuir Academy of Agriculture and Animal Husbandry Sciences, Hulun Buir 021000, Inner Mongolia, China; 3 Zhalantun Agriculture and Animal Husbandry Technology Extension Center, Hulun Buir 162650, Inner Mongolia, China
  • Received:2025-03-27 Revised:2025-07-09 Accepted:2025-07-09 Published online:2025-07-16
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2023YFE0105000), the Innovation Program of Chinese Academy of Agricultural Sciences, and the China Agriculture Research System of MOF and MARA (CARS-04).

摘要:

单产低、成本高、比较效益差是造成我国大豆产能不足的重要原因。东北地区是我国大豆生产的重要产区,面积全国占比在60%以上,优化该地区生产模式对于提高我国大豆产量和效益具有重要意义。本研究基于耐草甘膦转基因大豆品种,设置了免耕秸秆还田(NTRS)、隔年深松秸秆还田(STRS)、垄作秸秆还田(DTRS)和旋耕秸秆不还田(RTR) 4个处理,探究不同生产模式对耐草甘膦转基因大豆产量形成、杂草防控和经济效益的影响。结果表明,NTRS处理会提高大豆出苗期的土壤温度和土壤含水量,适度增加耕层的土壤紧实度,改善播种期间土壤墒情,提高大豆出苗率和出苗速度,相较于STRSDTRSRTR 3个处理,出苗率分别提高了3.63%2.72%4.66%NTRS处理显著降低了杂草数量和杂草优势度指数,提高了杂草多样性指数,杂草发生时间主要集中在大豆V2~V3期,便于除草剂喷施和杂草防控,显著降低了大豆R8期杂草干物重;相较于RTR处理,NTRSSTRSDTRS 3个处理降低了大豆底荚高度,其中NTRS处理可显著增加大豆单株荚数和单株粒数,提高大豆产量,达到3603 kg hm?2,有效提升5.12%~9.22%在经济效益方面,通过优化生产模式,NTRS处理可以有效减少耕种环节,降低人力投入,生产成本投入明显减少,实现经济效益的大幅提升。综上,免耕平作栽培技术结合转基因大豆品种具有较好的增温保墒效果,会显著提高大豆出苗率,杂草易防控,减少投入成本,提高大豆产量,促进大豆轻简化生产,这种轻简化生产是实现东北地区大豆种植节本增效的重要途径之一。

关键词: 生产模式, 转基因大豆, 杂草, 经济效益, 产量

Abstract:

Low yield, high production costs, and limited profitability are major factors contributing to insufficient soybean production in China. The Northeast region, which accounts for over 60% of the national soybean planting area, plays a pivotal role in national soybean output. Therefore, optimizing production practices in this region is crucial for improving soybean yield and economic returns. In this study, based on the use of glyphosate-tolerant genetically modified soybean varieties, four tillage treatments were evaluated: no-tillage with straw returning (NTRS), deep ripping every two years with straw returning (STRS), ridge tillage with straw returning (DTRS), and rotary tillage without straw returning (RTR). The objective was to assess the effects of these production modes on yield formation, weed control, and economic benefits. Results showed that the NTRS treatment increased soil temperature and moisture at the emergence stage, moderately enhanced soil compaction in the tillage layer, improved soil moisture during sowing, and significantly enhanced both the emergence rate and speed. Compared with the STRS, DTRS, and RTR treatments, NTRS improved emergence rates by 3.63%, 2.72%, and 4.66%, respectively. NTRS also significantly reduced weed density and the weed dominance index while increasing weed diversity. Weed emergence was primarily concentrated in the V2–V3 growth stages, which facilitated timely herbicide application and effective weed suppression, ultimately reducing weed dry weight at the R8 stage. Compared with RTR, all three straw-returning treatments (NTRS, STRS, and DTRS) reduced the height of the lowest pods. Among them, NTRS significantly increased the number of pods and grains per plant, resulting in a yield of 3603 kg hm?2, representing a 5.12% to 9.22% increase over other treatments. In terms of economic benefits, the NTRS treatment minimized the need for intensive tillage, reduced labor costs, and significantly lowered production inputs, thereby improving both agricultural productivity and profitability. In conclusion, the no-tillage flat cultivation system combined with genetically modified soybean varieties improved soil thermal and moisture conditions, enhanced seedling emergence, facilitated weed management, reduced input costs, and increased yield. This simplified production system offers a promising approach for achieving low-cost, high-efficiency soybean cultivation in Northeast China.

Key words: production mode, genetically modified soybean, weeds, economic benefits, yield

[1] Kong W S, Wei M, Khan N, Liang J, Han D Q, Zhang H J. Assessing sustainable future of import-independent domestic soybean production in China: policy implications and projections for 2030. Front Sustain Food Syst, 2024, 8: 1387609.

[2] Li B G, Liu Z, Huang F, Yang X G, Liu Z J, Wan W, Wang J K, Xu Y D, Li Z Z, Ren T S. Ensuring national food security by strengthening high-productivity black soil granary in Northeast China. BCAS, 2021, 36: 1184–1193.

[3]  Zhao J, Li N, Yang X G, Sun Z X. For the protection of black soils. Nat Food, 2025, 6: 119–120.

[4] Triplett G B Jr, Dick W A. No-tillage crop production: a revolution in agriculture! Agron J, 2008, 100: 153–165.

[5] Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res, 2004, 79: 7–31.

[6] Hansen N C, Allen B L, Baumhardt R L, Lyon D J. Research achievements and adoption of no-till, dryland cropping in the semi-arid U.S. Great Plains. Field Crops Res, 2012, 132: 196–203.

[7] de Freitas Seben G Jr, Corá J E, Lal R. The effects of land use and soil management on the physical properties of an Oxisol in Southeast Brazil. Rev Bras Ciênc Solo, 2014, 38: 1245–1255.

[8] Jacobs A A, Evans R S, Allison J K, Garner E R, Kingery W L, McCulley R L. Cover crops and no-tillage reduce crop production costs and soil loss, compensating for lack of short-term soil quality improvement in a maize and soybean production system. Soil Tillage Res, 2022, 218: 105310.

[9] Derpsch R, Friedrich T, Kassam A, Li H W. Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng, 2010, 3: 1–25.

[10] Reddy C. A study on crop weed competition in field crops. J Pharm Phytochem, 2018, 7: 3235–3240.

[11] Duke S O, Powles S B. Glyphosate: a once-in-a-century herbicide. Pest Manag Sci, 2008, 64: 319–325.

[12] Hungria M, Mendes I C, Nakatani A S, dos Reis-Junior F B, Morais J Z, de Oliveira M C N, Fernandes M F. Effects of the glyphosate-resistance gene and herbicides on soybean: Field trials monitoring biological nitrogen fixation and yield. Field Crops Res, 2014, 158: 43–54.

[13] Sun M, Li S Z, Yang W Z, Zhao B W, Wang Y H, Liu X Q. Commercial genetically modified corn and soybean are poised following pilot planting in China. Mol Plant, 2024, 17: 519–521.

[14] Calado J M G, Basch G, de Carvalho M. Weed management in no-till winter wheat (Triticum aestivum L.). Crop Prot, 2010, 29: 1–6.

[15] Clements D R, Benoit D L, Murphy S D, Swanton C J. Tillage effects on weed seed return and seedbank composition. Weed Sci, 1996, 44: 314–322.

[16] Ranaldo M, Carlesi S, Costanzo A, Bàrberi P. Functional diversity of cover crop mixtures enhances biomass yield and weed suppression in a Mediterranean agroecosystem. Weed Res, 2020, 60: 96–108.

[17] Colbach N, Busset H, Roger-Estrade J, Caneill J. Predictive modelling of weed seed movement in response to superficial tillage tools. Soil Tillage Res, 2014, 138: 1–8.

[18] Zamljen S A, Rovanšek A, Leskovšek R. Weed seed bank response during the early conversion period to less intensive tillage systems. Soil Tillage Res, 2024, 242: 106164.

[19] Bomfim N C P, Silva M S, Camargos L S, Martins A R. Ultrastructural and histochemical changes in glyphosate-tolerant soybean leaves exposed to glyphosate. J Agric Sci, 2019, 11: 243.

[20] Acharya B S, Dodla S, Gaston L A, Darapuneni M, Wang J J, Sepat S, Bohara H. Winter cover crops effect on soil moisture and soybean growth and yield under different tillage systems. Soil Tillage Res, 2019, 195: 104430.

[21] Wang H F, Wang L, Ren T S. Long-term no tillage alleviates subsoil compaction and drought-induced mechanical impedance. Int Agrophys, 2022, 36: 297–308.

[22] Cui X J, Wang Z W, Zhuang T F, Sun J Q, Song Y H. Improving wheat seedling quality through deep ploughing and soil compaction at sowing in lime concretion black soil. PLoS One, 2023, 18: e0288459.

[23] De Vita P, Di Paolo E, Fecondo G, Di Fonzo N, Pisante M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res, 2007, 92: 69–78. 

[24] Alsajri F A, Wijewardana C, Bheemanahalli R, Irby J T, Krutz J, Golden B, Reddy V R, Reddy K R. Morpho-physiological, yield, and transgenerational seed germination responses of soybean to temperature. Front Plant Sci, 2022, 13: 839270.

[25] Li F J, Zhang X B, Xu D Y, Ma Q, Le T, Zhu M, Li C Y, Zhu X K, Guo W S, Ding J F. No-tillage promotes wheat seedling growth and grain yield compared with plow-rotary tillage in a rice-wheat rotation in the high rainfall region in China. Agronomy, 2022, 12: 865.

[26] dos Santos H P, Fontaneli R S, Silva S R, Santi A, Verdi A C, Vargas A M. Long-term effects of four tillage systems and weather conditions on soybean yield and agronomic characteristics in Brazil. Crop Sci, 2015, 9: 445–452.

[27] Jamil C, de Oliveira Rubem S E R, Eliezer A G, Denis F B, Guilherme B P B, Fernanda W, Hudson K T. Prevention of yield losses caused by glyphosate in soybeans with biostimulant. Afr J Agric Res, 2016, 11: 1601–1607.

[28] Panneerselvam S, Lourduraj A C. Weed spectrum and effect of crop weed competition in soybean [Glycine max (L.) Merrill]-a review. Agric Rev, 2000, 21: 121–124.

[29] Nail E, Young D, Schillinger W. Diesel and glyphosate price changes benefit the economics of conservation tillage versus traditional tillage. Soil Tillage Res, 2007, 94: 321–327.

[30] Calcante A, Oberti R. A technical-economic comparison between conventional tillage and conservative techniques in paddy-rice production practice in northern Italy. Agronomy, 2019, 9: 886.

[31] Vincent-Caboud L, Peigné J, Casagrande M, Silva E. Overview of organic cover crop-based No-tillage technique in Europe: farmers’ practices and research challenges. Agriculture, 2017, 7: 42

[1] 武斌, 曹永刚, 胡发龙, 殷文, 樊志龙, 范虹, 柴强. 免耕轮作对减氮小麦产量下降的补偿效果[J]. 作物学报, 2025, 51(7): 1959-1968.
[2] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[3] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[4] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
[5] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
[6] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[7] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[8] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[9] 李子翔, 黄绒, 王志超, 李鸿雁, 谭俊行, 程宇, 杜雪竹, 盛锋. 聚-γ-谷氨酸对直播稻抗倒伏性的影响[J]. 作物学报, 2025, 51(6): 1654-1664.
[10] 崔鑫, 谷贺贺, 宋毅, 张哲, 刘诗诗, 陆志峰, 任涛, 鲁剑巍. 钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响[J]. 作物学报, 2025, 51(6): 1629-1642.
[11] 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675.
[12] 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617.
[13] 赵刚, 张建军, 党翼, 樊廷录, 王磊, 周刚, 王淑英, 李兴茂, 倪胜利, 米文博, 周旭姣, 程万莉, 李尚中. 黄土旱塬区秸秆覆盖量对不同降雨年型土壤水温效应和冬小麦产量的影响[J]. 作物学报, 2025, 51(6): 1643-1653.
[14] 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628.
[15] 王东, 王森, 尚丽, 冯浩伟, 张永巧, 崔佳鸣, 李爽, 章佳聪, 车欢. 补灌对黄土高原半湿润区冬小麦产量和水分利用效率的影响[J]. 作物学报, 2025, 51(5): 1312-1325.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!