欢迎访问作物学报,今天是

作物学报

• •    

绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应

闫尚龙,王琦明,柴强*,殷文,樊志龙,胡发龙,刘志鹏,韦金贵   

  1. 省部共建干旱生境作物学国家重点实验室 / 甘肃农业大学农学院,甘肃兰州 730070
  • 收稿日期:2024-11-12 修回日期:2025-03-26 接受日期:2025-03-26 网络出版日期:2025-04-07
  • 基金资助:
    本研究由甘肃省科技重大专项项目(24ZDNA008), 国家自然科学基金项目(U21A20218, 32372238),财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-22-G-12)和甘肃省科技计划项目(22JR5RA839)资助。

Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas

YAN Shang-Long,WANG QI-Ming,CHAI Qiang*,YIN Wen,FAN Zhi-Long,HU Fa-Long,LIU Zhi-Peng,WEI Jin-Gui   

  1. State Key Laboratory of Aridland Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2024-11-12 Revised:2025-03-26 Accepted:2025-03-26 Published online:2025-04-07
  • Supported by:
    This study was supported by the Major Science and Technology Project of Gansu Province (24ZDNA008), the National Natural Science Foundation of China (U21A20218, 32372238), the China Agriculture Research System of MOF and MARA (CARS-22-G-12), and the Science and Technology Program of Gansu Province (22JR5RA839).

摘要:

针对绿洲灌区增密导致玉米籽粒品质下降问题,研究间作豌豆对不同密度玉米籽粒品质的影响,以期为构建高产高品质玉米种植模式提供理论和实践依据。2020—2021年,设裂区试验,主区为单作玉米(M)、玉米间作豌豆(M||P);副区为玉米种植密度,单作分别为每公顷7.8万株 (M1,低密度)10.35万株(M2,中密度)12.9万株(M3,高密度),对应低、中、高间作玉米密度分别为每公顷4.5万株(M1||P)6万株(M2||P)7.5万株(M3||P)重点研究增密及间作豌豆对玉米产量和营养品质的影响。结果表明,增密显著提高玉米籽粒产量和生物产量;间作豌豆显著提高玉米的籽粒产量和生物产量,且间作能强化增密对籽粒产量和生物产量的正效应,间作中密度(M2||P)玉米籽粒产量和生物产量最高,分别较单作低密度提高了34.6%~36.6%30%~39.3%。随着密度的增大,籽粒淀粉含量显著增加,蛋白质和脂肪含量显著降低,而营养成分总产量先增加后降低;间作豌豆显著增加籽粒营养成分含量和营养成分总产量,且能够强化增密对籽粒淀粉含量以及籽粒营养成分总产量的正效应,消减增密对籽粒蛋白质含量负效应,同时弱化高密度较中密度导致的籽粒营养成分总产量下降。增密显著降低玉米籽粒中苯丙氨酸、亮氨酸、异亮氨酸、缬氨酸含量,显著增加色氨酸和赖氨酸含量;间作显著提高籽粒中苯丙氨酸、亮氨酸、异亮氨酸、缬氨酸含量,且间作能够弱化增密对籽粒苯丙氨酸和亮氨酸含量的下降,以间作中密度处理效果最好。从综合表现来看,增密和间作均显著提高玉米的综合表现,间作豌豆且玉米密度为6万株 hm?2时综合表现最优(评分为0.47)。该模式可最大限度提升籽粒产量,同时有利于籽粒品质提升,是河西绿洲灌区提升玉米籽粒产量和品质的可行种植模式。

关键词: 增密, 玉米间作豌豆, 籽粒产量, 营养成分含量, 籽粒营养品质产量

Abstract:

To address the decline in maize grain quality caused by increased planting density in oasis irrigation areas, this study examines the effects of intercropping pea on maize grain quality under different planting densities, aiming to provide theoretical and practical guidance for optimizing high-yield, high-quality maize cultivation systems. A split-plot experiment was conducted from 2020 to 2021, with monocropped maize (M) and intercropped maize with pea (M||P) as the main plots, and different maize planting densities as subplots: for monocropping, 78,000 plants per hectare (M1, low density), 103,500 plants per hectare (M2, medium density), and 129,000 plants per hectare (M3, high density); for intercropping, 45,000 plants per hectare (M1||P, low density), 60,000 plants per hectare (M2||P, medium density), and 75,000 plants per hectare (M3||P, high density). The results showed that increasing planting density significantly improved maize grain yield and biological yield, while intercropping with pea further enhanced these effects. Among the intercropping treatments, medium-density maize (M2||P) achieved the highest grain and biological yields, increasing by 34.6%–36.6% and 30.0%–39.3%, respectively, compared to low-density monocropped maize. As planting density increased, starch content in maize grains significantly increased, whereas protein and fat contents significantly decreased, with the total yield of nutritional components first increasing and then declining. Intercropping with pea significantly improved maize grain nutritional content and total nutritional yield, enhanced the positive effect of higher planting density on grain starch content and total nutritional yield, mitigated the negative impact of increased density on protein content, and reduced the decline in total nutritional yield observed at high density compared to medium density. Higher planting density significantly reduced the content of phenylalanine, leucine, isoleucine, and valine in maize grains while significantly increasing tryptophan and lysine concentrations; intercropping significantly increased phenylalanine, leucine, isoleucine, and valine levels and alleviated the reduction in phenylalanine and leucine content caused by increased planting density, with the best effects observed under medium-density intercropping (M2||P). Overall, both increased planting density and intercropping significantly improved the comprehensive performance of maize, with the best overall performance achieved by intercropping pea and a maize planting density of 60,000 plants per hectare (M2||P), yielding a performance score of 0.47. This planting model maximizes grain yield while enhancing grain quality, making it a feasible and effective cultivation strategy for improving maize production in the Hexi Oasis irrigation area.

Key words: densification, maize intercropped with pea, seed yield, nutrient content, seed nutrient quality yield

[1] Shiferaw B, Prasanna B M, Hellin J, Bänziger M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur, 2011, 3: 307–327.

[2] Edgerton M D. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol, 2009, 149: 7–13.

[3] Detweiler K B, He F, Mangian H F, Davenport G M, de Godoy M R C. Extruded feline diets formulated with high inclusion of soybean hulls: effects on apparent total tract macronutrient digestibility, and fecal quality and metabolites. J Anim Sci, 2019, 97: 1042–1051.

[4]  Palacios-Rojas N, McCulley L, Kaeppler M, Titcomb T J, Gunaratna N S, Lopez-Ridaura S, Tanumihardjo S A. Mining maize diversity and improving its nutritional aspects within agro-food systems. Compr Rev Food Sci Food Saf, 2020, 19: 1809–1834.

[5]  Andorf C, Beavis W D, Hufford M, Smith S, Suza W P, Wang K, Woodhouse M, Yu J M, Lübberstedt T. Technological advances in maize breeding: past, present and future. Theor Appl Genet, 2019, 132: 817–849.

[6] Cairns J E, Sonder K, Zaidi P H, Verhulst N, Mahuku G, Babu R, Nair S K, Das B, Govaerts B, Vinayan M T, et al. Chapter one maize production in a changing climate: impacts, adaptation, and mitigation strategies. Adv Agron, 2012, 114: 1–58.

[7]  Li N, Song D J, Peng W, Zhan J P, Shi J Q, Wang X F, Liu G H, Wang H Z. Maternal control of seed weight in rapeseed (Brassica napus L.): the causal link between the size of pod (mother, source) and seed (offspring, sink). Plant Biotechnol J, 2019, 17: 736–749.

[8]  Karasu A, Kușcu H, Mehmet Ö, Bayram G. The effect of different irrigation water levels on grain yield, yield components and some quality parameters of silage maize (Zea mays in dentata Sturt.). Not Bot Horti Agrobo, 2015, 43: 138–145.

[9] Zhang Q, Zhang L Z, Evers J, van der Werf W, Zhang W Q, Duan L S. Maize yield and quality in response to plant density and application of a novel plant growth regulator. Field Crops Res, 2014, 164: 82–89.

[10] 赵建华, 孙建好, 李隆, 李伟绮. 改变玉米行距种植对豌豆/玉米间作体系产量的影响. 中国生态农业学报 (中英文), 2012, 20: 1451–1456.

Zhao J H, Sun J H, Li L, Li W Q. Effect of maize row spacing on yield of pea/maize intercropping system. Chin J Eco-Agric, 2012, 20: 1451–1456 (in Chinese with English abstract).

[11] 张宇. 不同平作种植模式对玉米叶部性状和产量及品质的影响. 黑龙江农业科学, 2019, (11): 19–23. 

Zhang Y. Effects of different flatten planting patterns on leaf traits and yield and grain quality of maize. Heilongjiang Agric Sci, 2019, (11): 19–23 (in Chinese with English abstract). 

[12]  马紫微, 李武. 不同播期对华南鲜食糯玉米产量及品质的影响. 广东农业科学, 2023, 50(5): 2129.

Ma Z W, Li W. Effects of different sowing periods on yield and quality of fresh glutinous maize in South China. Guangdong Agric Sci, 2023, 50(5): 2129 (in Chinese with English abstract). 

[13] 赵花荣, 周广胜, 齐月, 耿金剑, 田晓丽. 播期调整对华北北部冬小麦、夏玉米产量和品质的影响. 中国农业科学, 2024, 57: 2964–2985. 

Zhao H R, Zhou G S, Qi Y, Geng J J, Tian X L. Effects of sowing date adjustment on yield and quality of winter wheat and summer maize in northern area of North China. Sci Agric Sin, 2024, 57: 2964–2985 (in Chinese with English abstract).

[14] 黄鑫, 佟玲, 康德奎, 何玉江, 王万祯, 杨胜举. 种植密度和水分胁迫对玉米灌浆特性与源库关系的影响. 灌溉排水学报, 2022, 41(6): 1220.

Huang X, Tong L, Kang D K, He Y J, Wang W Z, Yang S J. The combined effect of planting density and water stress on grain traits of maize. J Irrig Drain, 2022, 41(6): 1220 (in Chinese with English abstract).

[15] Xu C L, Huang S B, Tian B J, Ren J H, Meng Q F, Wang P. Manipulating planting density and nitrogen fertilizer application to improve yield and reduce environmental impact in Chinese maize production. Front Plant Sci, 2017, 8: 1234.

[16] 程建梅, 赵树政, 杨美丽, 苏玉杰, 王帮太, 鹿红卫, 秦贵文. 种植密度对玉米品种植株及籽粒相关性状的影响. 中国农学通报, 2022, 38(18): 20–27.

Cheng J M, Zhao S Z, Yang M L, Su Y J, Wang B T, Lu H W, Qin G W. Planting density of maize: effects on plant and kernel related characters of different varieties. Chin Agric Sci Bull, 2022, 38(18): 2027 (in Chinese with English abstract).

[17] 王晓梅, 崔坤, 宋利润. 不同密度与玉米生长发育及品质相关性的研究. 吉林农业科学, 2006, 31(3): 3–6.

Wang X M, Cui K, Song L R. Studies on correlation between plant density and growth and quality of maize. J Jilin Agric Sci, 2006, 31(3): 3–6 (in Chinese with English abstract).

[18] Baghdadi A, Halim R A, Majidian M, Wan N, Wan D, Izham A. Plant density and tillage effects on forage corn quality. J Food Agric Environ, 2012, 10: 366–370.

[19] 黄兴辉. 玉米种植密度对产量和品质的影响. 农业与技术, 2015, 35(16): 155–156.

Huang X H. Effect of maize planting density on yield and quality. Agric Technol, 2015, 35(16): 155–156 (in Chinese with English abstract).

[20] Zhang D S, Sun Z X, Feng L S, Bai W, Yang N, Zhang Z, Du G J, Feng C, Cai Q, Wang Q, et al. Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping. Field Crops Res, 2020, 257: 107926.

[21] 张金丹, 范虹, 杜进勇, 殷文, 樊志龙, 胡发龙, 柴强. 小麦玉米同步增密有利于优化种间关系而提高间作产量. 作物学报, 2021, 47: 2481–2489.

Zhang J D, Fan H, Du J Y, Yin W, Fan Z L, Hu F L, Chai Q. Synchronously higher planting density can increase yield via optimizing inter-specific interaction of intercropped wheat and maize. Acta Agron Sin, 2021, 47: 2481–2489 (in Chinese with English abstract).

[22] 任旭灵, 滕园园, 王一帆, 殷文, 柴强. 玉米间作豌豆种间竞争互补对少耕密植的响应. 中国生态农业学报(中英文), 2019, 27: 860–869.

Ren X L, Teng Y Y, Wang Y F, Yin W, Chai Q. Response of interspecific competition and complementarity of maize/pea intercropping to reduced tillage and high-density planting. Chin J Eco-Agric, 2019, 27: 860–869 (in Chinese with English abstract).

[23] 刘天学, 李潮海, 马新明, , 士英. 不同基因型玉米间作对叶片衰老、籽粒产量和品质的影响. 植物生态学报, 2008, 32: 914–921.

Liu T X, Li C H, Ma X M, Zhao X, Liu S Y. Effects of maize intercropping with different genotypes on leaf senescence and grain yield and quality. J Plant Ecol, 2008, 32: 914–921 (in Chinese with English abstract).

[24] 沈其荣, 褚贵新, 曹金留, 曹云, 晓燕. 素营养的角度分析旱作水稻与花生间作系统的产量优势. 中国农业科学, 2004, 37: 1177–1182.

Shen Q R, Chu G X, Cao J L, Cao Y, Yin X Y. Yield advantage of groundnut intercropped with rice cultivated in aerobic soil from the viewpoint of plant nitrogen nutrition. Sci Agric Sin, 2004, 37: 1177–1182 (in Chinese with English abstract).

[25] Li L, Yang S C, Li X L, Zhang F S, Christie P. Interspecific complementary and competitive interactions between intercropped maize and faba bean. Plant Soil, 1999, 212: 105–114. 

[26] 张喜军, 魏廷邦, 樊志龙, 柴强. 绿洲灌区水氮减施密植玉米的光合源动态和产量表现. 核农学报, 2020, 34: 1302–1310.

Zhang X J, Wei T B, Fan Z L, Chai Q. Photosynthetic source dynamics and yield performance of high density maize with reduced amount of water and nitrogen in oasis irrigation region. J Nucl Agric Sci, 2020, 34: 1302–1310 (in Chinese with English abstract).

[27] 王茂鉴, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 灌溉模式对河西灌区禾-豆间作系统饲草产量、品质和水分利用的影响. 草业学报, 2023, 32(3): 13–29.

Wang M J, Shi W, Chang S H, Zhang C, Jia Q M, Hou F J. Effects of irrigation modes on forage yield, quality and water use of corn-legume intercropping systems in the Hexi irrigation area. Acta Pratac Sin, 2023, 32(3): 13–29 (in Chinese with English abstract).

[28尉亚囡, 薄其飞, 唐安, 高嘉瑞, 马田, 尉熊熊, 张方方, 周祥利, 岳善超, 李世清. 长期覆膜和施用有机肥对黄土高原春玉米产量和品质的效应. 中国农业科学, 2023, 56: 1708–1717.

Wei Y N, Bo Q F, Tang A, Gao J R, Ma T, Wei X X, Zhang F F, Zhou X L, Yue S C, Li S Q. Effects of long-term film mulching and application of organic fertilizer on yield and quality of spring maize on the Loess Plateau. Sci Agric Sin, 2023, 56: 1708–1717 (in Chinese with English abstract).

[29蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, . 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51: 4625–4632.

Kuai J, Wang J J, Zuo Q S, Chen H L, Gao J Q, Wang B, Zhou G S, Fu T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Sci Agric Sin, 2018, 51: 4625–4632 (in Chinese with English abstract).

[30华劲松. 种植密度对间作芸豆群体冠层结构及产量的影响. 作物杂志, 2012, (5): 131–135.

Hua J S. Effects of density on canopy structure and yield of kidney bean-corn intercropping pattern. Crops, 2012, (5): 131–135 (in Chinese with English abstract).

[31] Hu F L, Tan Y, Yu A Z, Zhao C, Fan Z L, Yin W, Chai Q, Coulter J A, Cao W D. Optimizing the split of N fertilizer application over time increases grain yield of maize-pea intercropping in arid areas. Eur J Agron, 2020, 119: 126117.

[32] Lithourgidis, Dordas, Damalas, Vlachostergios. Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci, 2011, 5: 396–410.

[33] Gou F, van Ittersum M K, Wang G Y, van der Putten P E L, van der Werf W. Yield and yield components of wheat and maize in wheat–maize intercropping in the Netherlands. Eur J Agron, 2016, 76: 17–27.

[34] Yin W, Chen G P, Feng F X, Guo Y, Hu F L, Chen G D, Zhao C, Yu A Z, Chai Q. Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crops Res, 2017, 204: 4251.

[35] Yin W, Chai Q, Zhao C, Yu A Z, Fan Z L, Hu F L, Fan H, Guo Y, Coulter J A. Water utilization in intercropping: a review. Agric Water Manag, 2020, 241: 106335.

[36赵建华, 孙建好, 陈亮之, 李伟绮. /豆间作产量优势中补偿效应和选择效应的角色. 作物学报, 2022, 48: 2588–2596.

Zhao J H, Sun J H, Chen L Z, Li W Q. Role of complementarity and select effect for yield advantage of maize/legumes intercropping systems. Acta Agron Sin, 2022, 48: 2588–2596 (in Chinese with English abstract).

[37蒋紫薇, 刘桂宇, 安昊云, 石薇, 常生华, 张程, 贾倩民, 扶江. 种植密度与施氮对玉米/秣食豆间作系统饲草产量、品质和氮肥利用的影响. 草业学报, 2022, 31(7): 157–171.

Jiang Z W, Liu G Y, An H Y, Shi W, Chang S H, Zhang C, Jia Q M, Hou F J. Effects of planting density and nitrogen application on forage yield, quality and nitrogen use efficiency in a maize/forage soybean intercropping system. Acta Pratac Sin, 2022, 31(7): 157–171 (in Chinese with English abstract). 

[38赵建华, 孙建好, 陈亮之, 李伟绮, 曹素珍, 谷科强. 玉米与不同豆科作物间作对氮素的竞争与恢复效应. 植物营养与肥料学报, 2023, 29: 640–650.

Zhao J H, Sun J H, Chen L Z, Li W Q, Cao S Z, Gu K Q. Nitrogen competition and recovery effects of maize in different maize/legumes intercropping systems. J Plant Nutr Fert, 2023, 29: 640–650 (in Chinese with English abstract).

[39] Prasanna B, Vasal S, Kassahun B, Singh N. Quality protein maize. Curr Sci, 2015, 81: 1308–1319.

[40张桂国, 杨在宾, 董树亭. 苜蓿+玉米间作系统饲料生产潜力的评定. 草业学报, 2011, 20(2): 117–126. 

       Zhang G G, Yang Z B, Dong S T. An evaluation of forage potential of an alfalfa+maize intercropping system. Acta Pratac Sin, 2011, 20(2): 117–126 (in Chinese with English abstract).

[41] Sauberlich H E, Chang W Y, Salmon W D. The amino acid and protein content of corn as related to variety and nitrogen fertilization. J Nutr, 1953, 51: 241–250.

[42] Lawlor D W. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot, 2002, 53: 773–787.

[1] 王丽萍, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 西北绿洲灌区玉米叶片衰老特征对不同地膜覆盖利用方式的响应[J]. 作物学报, 2025, 51(1): 233-246.
[2] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[3] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[4] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[5] 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042.
[6] 吴霞玉, 李盼, 韦金贵, 范虹, 何蔚, 樊志龙, 胡发龙, 柴强, 殷文. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079.
[7] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[8] 韦金贵, 毛守发, 江俞欣, 樊志龙, 胡发龙, 柴强, 殷文. 绿肥对减量施氮小麦籽粒产量和氮素利用的补偿机制[J]. 作物学报, 2024, 50(12): 3129-3143.
[9] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[10] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[11] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[12] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[13] 赵彩霞, 沈吉成, 尹淑香, 叶发慧, 杨淼思, 刘瑞娟, 刘德梅, 张怀刚, 沈裕虎, 陈文杰. 波兰小麦在青藏高原饲用性能的评价[J]. 作物学报, 2023, 49(11): 3017-3028.
[14] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[15] 丁永刚, 陈立, 董金鑫, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 高产高效型半冬性小麦品种的产量构成、氮素积累转运和籽粒品质特征分析[J]. 作物学报, 2022, 48(12): 3144-3154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!