欢迎访问作物学报,今天是

作物学报

• •    

西北灌漠土区长期有机无机配施协同提升玉米产量和品质

郑浩飞1,2,3,杨楠2,杜健1,贾改秀1,邹悦1,麻文浩2,王彦婷2,索东让1,赵建华3,*,孙宁科1,*,张建文1,*   

  1. 1张掖市农业科学研究院, 甘肃张掖734000; 2省部共建干旱生境作物学国家重点实验室 / 甘肃农业大学农学院, 甘肃兰州730000; 3甘肃省农业科学院土壤肥料与节水农业研究所, 甘肃兰州730000
  • 收稿日期:2024-08-15 修回日期:2025-03-26 接受日期:2025-03-26 网络出版日期:2025-03-31
  • 基金资助:
    本研究由张掖市市级科技计划项目(ZY2022KY04)资助。

Long-term combined application of organic and inorganic fertilizers achieving high yield and high quality of maize in northwest irrigated oasis

ZHENG Hao-Fei1,2,3, YANG Nan2, DU Jian1, JIA Gai-Xiu1, ZOU Yue1, MA Wen-Hao2, WANG Yan-Ting2, SUO Dong-Rang1, ZHAO Jian-Hua3,*,SUN Ning-Ke1,*,ZHANG Jian-Wen1,*   

  1. 1 Zhangye Academy of Agriculture Sciences, Zhangye 734000, Gansu, China; 2 State Key Laboratory of Arid Habit Crop Science / College of Agriculture, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 3 Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2024-08-15 Revised:2025-03-26 Accepted:2025-03-26 Published online:2025-03-31
  • Supported by:
    This study was supported by the Municipal Science and Technology Plan of Zhangye (ZY2022KY04).

摘要:

基于1982年布设在西北灌漠土区的长期定位试验,探究长期有机无机配施对玉米产量和籽粒品质的影响。长期定位试验在甘肃省张掖市农业科学院试验站进行,采用二因素裂区试验设计,主因素为施用有机肥(M)和不施用有机肥(NM),副因素为不同化肥施用,包括不施化肥(CK)、施氮肥(N)、施氮磷肥(NP)和施氮磷钾肥(NPK),共8个处理。20222023年收获期考察农艺性状并测定玉米籽粒蛋白、淀粉和脂肪含量,计算籽粒粗蛋白产量。结果表明,M处理中玉米籽粒产量较NM显著提高11.51%~18.26%,粗蛋白产量显著提高17.02%。在施用有机肥条件下,NPNPK处理获得高产量,分别平均达到12.85 t hm?213.29 t hm?2,二者间无显著差异。无论是否施用有机肥,CK相比,NNPNPK处理中产量分别平均加17.89%49.86%54.44%,NP处理产量N处理显著增加27.12%;CK相比,N处理中籽粒蛋白量显著增加了12.83%,而NPNPK处理中籽粒蛋白含量与CK比无显著差异;M处理中蛋白淀粉含量较NM分别增加了21.88%0.56%;与CK相比,NNPNPK处理中蛋白量分别增加29.08%52.31%61.84%,玉米籽粒脂肪含量变化不显著。因此,施用有机肥能够增加产量,配施化学肥料(特别是氮磷肥)能在此基础上进一步提高玉米产量和籽粒品质,促进玉米高产优质可持续发展。

关键词: 粗蛋白产量, 增施有机肥, 籽粒品质, 玉米, 绿洲灌区

Abstract:

The long-term effects of combined organic and inorganic fertilizer application on maize yield and grain quality were evaluated based on a long-term field experiment initiated in 1982 in the irrigated desert soil region of Northwest China. The experiment was conducted at the Zhangye Academy of Agricultural Sciences Experimental Station in Gansu Province, China, using a two-factor split-plot design. The main factor was the application of organic manure (M) versus no organic manure (NM), while the sub-factor consisted of different chemical fertilizer treatments: no chemical fertilizer (CK), nitrogen fertilizer (N), nitrogen and phosphorus fertilizer (NP), and nitrogen, phosphorus, and potassium fertilizer (NPK), resulting in a total of eight treatments. Agronomic traits were assessed at harvest in 2022 and 2023, and maize grain quality parameters, including protein, starch, and fat content, were measured. Crude protein yield was also calculated. The results showed that, compared with N application alone, the addition of organic manure (M) significantly increased maize grain yield by 11.51%–18.26%, with a 17.02% increase in crude protein yield. Under M conditions, NP and NPK treatments achieved higher yields, averaging 12.85 t hm?2 and 13.29 t hm?2, respectively, with no significant difference between them. Regardless of organic manure application, N, NP, and NPK treatments increased yield by 17.89%, 49.86%, and 54.44%, respectively, compared with CK. Additionally, NP application significantly improved yield by 27.12% compared with N. The interaction between organic manure and inorganic fertilizer had a significant effect on maize grain protein content. Compared with CK, N application increased grain protein content by 12.83%, while NP and NPK showed no significant difference in protein content relative to CK. Organic manure application (M) increased protein yield by 21.88% and starch content by 0.56% compared with NM. Furthermore, compared with CK, N, NP, and NPK treatments increased protein yield by 29.08%, 52.31%, and 61.84%, respectively, but had no significant effect on maize grain fat content. In conclusion, organic manure application enhances maize yield, while inorganic fertilizer application, particularly NP, further improves both yield and grain quality. The combined use of organic and inorganic fertilizers promotes high-yield, high-quality maize production and contributes to sustainable agricultural development.

Key words: crude protein yield, organic manure addition, grain quality, maize, oasis irrigated area

[1] Luo N, Meng Q F, Feng P Y, Qu Z R, Yu Y H, Liu D L, Müller C, Wang P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat Commun, 2023, 14: 2637.

[2] Thompson L M. Climatic change, weather variability, and corn production. Agron J, 1986, 78: 649−653.

[3] Wang Y, Xing Y, Yang X Y, Yu Y W, Li J K, Zhao C Y, Yuan M Y, Huang W L, Yin Y, Liu G H, et al. Knockout of ZmNST2 promotes bioethanol production from corn stover. Plant Biotechnol J, 2024, 22: 30993101.

[4] Xu Y, Luo B L, Jia R, Xiao J, Wang X Q, Yang Y D, Xue S, Zeng Z H, Brown R W, Zang H D. Quantifying synergies and trade-offs in the food-energy-soil-environment nexus under organic fertilization. J Environ Manage, 2024, 349: 119526.

[5] Zhang X, Zou T, Lassaletta L, Mueller N D, Tubiello F N, Lisk M D, Lu C Q, Conant R T, Dorich C D, Gerber J, et al. Quantification of global and national nitrogen budgets for crop production. Nat Food, 2021, 2: 529−540.

[6] Graybill J S, Cox W J, Otis D J. Yield and quality of forage maize as influenced by hybrid, planting date, and plant density. Agron J, 1991, 83: 559−564.

[7] Weber V S, Araus J L, Cairns J E, Sanchez C, Melchinger A E, Orsini E. Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crops Res, 2012, 128: 8290.

[8] 陈先敏, 梁效贵, 赵雪, 高震, 吴巩, 申思, 林珊, 周丽丽, 周顺利. 历年国审玉米品种产量和品质性状变化趋势分析. 中国农业科学, 2018, 51: 4020−4029. 

Chen X M, Liang X G, Zhao X, Gao Z, Wu G, Shen S, Lin S, Zhou L L, Zhou S L. Analysis on the trends of yield and quality related traits for maize hybrids released in China over the past years. Sci Agric Sin, 2018, 51: 4020−4029 (in Chinese with English abstract).

[9] 张世煌, 田清震, 李新海, 李明顺, 谢传晓. 玉米种质改良与相关理论研究进展. 玉米科学, 2006, 14(1): 1−6.

Zhang S H, Tian Q Z, Li X H, Li M S, Xie C X. Advancement of maize germplasm improvement and relevant research. J Maize Sci, 2006, 14(1): 1−6 (in Chinese with English abstract).

[10] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, . 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50: 1941−1959.

Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, et al. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017, 50: 1941−1959 (in Chinese with English abstract).

[11] Miao Y X, Mulla D J, Robert P C, Hernandez J A. Within-field variation in corn yield and grain quality responses to nitrogen fertilization and hybrid selection. Agron J, 2006, 98: 129−140.

[12] Rizzo G, Monzon J P, Tenorio F A, Howard R, Cassman K G, Grassini P. Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments. Proc Natl Acad Sci USA, 2022, 119: e2113629119.

[13] 郑伟. 小麦品质性状及其调优技术研究进展. 耕作与栽培, 2001, (1): 10−12.

Zheng W. Research progress on wheat quality traits and its optimization technology. Tillage Cultiv, 2001, (1); 10−12 (in Chinese with English abstract).

[14] 刘淑云, 董树亭, 胡昌浩. 生态环境因素对玉米子粒品质影响的研究进展. 玉米科学, 2002, 10(1): 41–45.

Liu S Y, Dong S T, Hu C H. Research progress about quality of maize is affected by the ecological environmental factors. J Maize Sci, 2002, 10(1): 41−45 (in Chinese with English abstract).

[15] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19: 259−273.

Zhu Z L, Jin J Y. Fertilizer use and food security in China. Plant Nutr Fert Sci, 2013, 19: 259−273 (in Chinese with English abstract).

[16] 王泽林, 白炬, 李阳, 岳善超, 李世清. 氮肥施用和地膜覆盖对旱作春玉米氮素吸收及分配的影响. 植物营养与肥料学报, 2019, 25: 74−84.

Wang Z L, Bai J, Li Y, Yue S C, Li S Q. Effects of nitrogen application and plastic film mulching on nitrogen uptake and allocation in dry-land spring maize. J Plant Nutr Fert, 2019, 25: 74−84 (in Chinese with English abstract).

[17] 张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中. 覆膜时期和施氮量对陇东旱塬玉米产量和水氮利用效率的影响. 中国农业科学, 2022, 55: 479−490.

Zhang J J, Dang Y, Zhao G, Wang L, Fan T L, Li S Z. Influences of mulching periods and nitrogen application rates on maize yield as well as water and nitrogen use efficiencies in Loess Plateau of eastern Gansu province. Sci Agric Sin, 2022, 55: 479−490 (in Chinese with English abstract).

[18] Wang X J, Sale P, Hayden H, Tang C X, Clark G, Armstrong R. Plant roots and deep-banded nutrient-rich amendments influence aggregation and dispersion in a dispersive clay subsoil. Soil Biol Biochem, 2020, 141: 107664.

[19] Gill J S, Sale P W G, Tang C. Amelioration of dense sodic subsoil using organic amendments increases wheat yield more than using gypsum in a high rainfall zone of southern Australia. Field Crops Res, 2008, 107: 265–275.

[20] Gill J S, Clark G J, Sale P W, Peries R R, Tang C. Deep placement of organic amendments in dense sodic subsoil increases summer fallow efficiency and the use of deep soil water by crops. Plant Soil, 2012, 359: 57–69.

[21] Wang X L, Ren Y Y, Zhang S Q, Chen Y L, Wang N. Applications of organic manure increased maize (Zea mays L.) yield and water productivity in a semi-arid region. Agric Water Manag, 2017, 187: 88−98.

[22] 俄胜哲, 车宗贤, 曾希柏, 黄涛, 柴彦君, 索东让, 安康. 长期施肥对河西绿洲灌漠土有机碳库储量及水稳性团聚体的影响. 土壤通报, 2014, 45: 1157–1163.

E S Z, Che Z X, Zeng X B, Huang T, Chai Y J, Suo D R, An K. Effects of long-term fertilization on irrigated desert soil organic carbon stock and soil aggregate in Hexi oasis. Chin J Soil Sci, 2014, 45: 1157−1163 (in Chinese with English abstract).

[23] Li H, Feng W T, He X H, Zhu P, Gao H J, Sun N, Xu M G. Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the northeast China plain. J Integr Agric, 2017, 16: 937−946.

[24] 杨凯, 杜延全, 张西兴, 王明伟, 李延锋, 朱建强. 有机物料与化肥配施提升土壤肥力、养分利用和玉米产量研究. 中国土壤与肥料, 2024, (4): 76–82.

Yang K, Du Y Q, Zhang X X, Wang M W, Li Y F, Zhu J Q. Experimental study on combined application of organic materials and chemical fertilizers to improve soil fertility, nutrient utilization and maize yield. Soil Fert Sci China, 2024, (4): 76–82 (in Chinese with English abstract).

[25] 杨叶钰萍, 郑洁, 靳乐乐, 彭紫怡, 王晓玥, 徐勤松, 蒋瑜霁. 有机培肥对根际解磷细菌群落及玉米生产力的影响. 土壤学报, 网络首发 [2024-06-05], http://kns.cnki.net/kcms/detail/32.1119.P.20240604.1627.004.

Yang Y Y P, Zheng J, Jin L L, Peng Z Y, Wang X Y, Xu Q S, Jiang Y J. Effects of organic fertilization on rhizosphere phosphate-solubilizing bacterial community and maize productivity. Acta Pedol Sin, Published online [2024-06-05], http://kns.cnki.net/kcms/detail/32.1119.P.20240604.1627. 004 (in Chinese with English abstract).

[26] 郭锦花, 李梦瑶, 张军, 李爽, 彭彦珉, 肖慧淑, 田文仲, 李俊红, 张洁, 李芳, . 施用有机肥和秸秆还田对旱地玉-麦二熟体系作物产量、品质和化肥效率的影响. 干旱地区农业研究, 2024, 42(3): 118–126.

Guo J H, Li M Y, Zhang J, Li S, Peng Y M, Xiao H S, Tian W Z, Li J H, Zhang J, Li F, et al. Effects of organic fertilizer application and straw return on crop yield, quality, and fertilizer efficiency in summer maize-winter double cropping system. Agric Res Arid Areas, 2024, 42(3): 118-126 (in Chinese with English abstract).

[27] 梁元振, 仝利朋, 吴德亮, 郭乾坤, 徐凤花, 赵京考. 有机无机肥配施对土壤硝态氮、玉米产量和氮素利用率的影响. 玉米科学, 2017, 25(4): 111–116.

Liang Y Z, Tong L P, Wu D L, Guo Q K, Xu F H, Zhao J K. Effects of organic manure combined with inorganic fertilizer on soil nitrate nitrate, maize yield and N use efficiency. J Maize Sci, 2017, 25: 111–116 (in Chinese with English abstract).

[28] Ren F L, Sun N, Misselbrook T, Wu L H, Xu M G, Zhang F S, Xu W. Responses of crop productivity and reactive nitrogen losses to the application of animal manure to China’s main crops: a meta-analysis. Sci Total Environ, 2022, 850: 158064.

[29] 施梦馨, 王豪吉, 土馨雨, 马佳轮, 朱兴, 白雪, 官会林, 徐武美. 施用有机肥对碱性土壤理化特征与作物生长的影响. 云南师范大学学报(自然科学版), 2022, 42(1): 50–57.

Shi M X, Wang H J, Tu X Y, Ma J L, Zhu X G, Bai X, Guan H L, Xu W M. Effects of the application of organic fertilizer on the alkaline soil properties and crop growth. J Yunnan Norm Univ (Nat Sci Edn), 2022, 42(1): 50–57 (in Chinese with English abstract).

[30] 尉亚囡, 薄其飞, 唐安, 高嘉瑞, 马田, 尉熊熊, 张方方, 周祥利, 岳善超, 李世清. 长期覆膜和施用有机肥对黄土高原春玉米产量和品质的效应. 中国农业科学, 2023, 56: 1708–1717.

Wei Y N, Bo Q F, Tang A, Gao J R, Ma T, Wei X X, Zhang F F, Zhou X L, Yue S C, Li S Q. Effects of long-term film mulching and application of organic fertilizer on yield and quality of spring maize on the Loess Plateau. Sci Agric Sin, 2023, 56: 1708–1717 (in Chinese with English abstract).

[31] Liu X, Zhang Y L, Wang Z, Chen Z H. The contribution of organic and chemical fertilizers on the pools and availability of phosphorus in agricultural soils based on a meta-analysis. Eur J Agron, 2024, 156: 127144.

[32] Hu W, Zhang Y P, Rong X M, Zhou X, Fei J C, Peng J W, Luo G W. Biochar and organic fertilizer applications enhance soil functional microbial abundance and agroecosystem multifunctionality. Biochar, 2024, 6: 3.

[33] 席凯鹏, 杨苏龙, 席吉龙, 李永山, 张建诚, 武雪萍. 长期棉花秸秆配施有机肥对土壤理化性质及棉花产量的影响. 中国土壤与肥料, 2022, (7): 82–90.

Xi K P, Yang S L, Xi J L, Li Y S, Zhang J C, Wu X P. Effects of long-term cotton straw incorporation and manure application on soil characters and cotton yield. Soil Fertil Sci China, 2022, (7): 82–90 (in Chinese with English abstract).

[34] 张文学, 王少先, 金伟, 徐丽萍, 唐先干, 熊丽, 王萍, 夏文建, 刘增兵, 孙刚, . 有机无机氮肥比例对稻田土壤肥力和作物产量的短期效应. 植物营养与肥料学报, 2023, 29: 1300–1312.

Zhang W X, Wang S X, Jin W, Xu L P, Tang X G, Xiong L, Wang P, Xia W J, Liu Z B, Sun G, et al. Short-term effects of organic to chemical nitrogen proportion on paddy soil fertility and double rice yield. J Plant Nutr Fert, 2023, 29: 1300–1312 (in Chinese with English abstract).

[35] Zhai L C, Zhang L H, Cui Y Z, Zhai L F, Zheng M J, Yao Y R, Zhang J T, Hou W B, Wu L Y, Jia X L. Combined application of organic fertilizer and chemical fertilizer alleviates the kernel position effect in summer maize by promoting post-silking nitrogen uptake and dry matter accumulation. J Integr Agric, 2024, 23: 1179–1194.

[36] 谢钧宇, 张慧芳, 罗云琪, 孟会生, 张杰, 洪坚平, 徐明岗. 连续7年施有机肥和化肥提高复垦土壤上玉米产量的驱动因子. 农业工程学报, 网络首发[2024-01-29], http://kns.cnki.net/kcms/detail/11.2047.S.20240126.1904.036.

Xie J Y, Zhang H F, Luo H Q, Meng H S, Zhang J, Hong J P, Xu M G. The driving factors of increasing maize yield on reclaimed soil by applying organic fertilizer and chemical fertilizer for 7 consecutive years. Trans CSAE, Published online [2024-01-29], http://kns.cnki.net/kcms/detail/ 11.2047.S. 20240126. 1904.036 (in Chinese with English abstract).

[1] 李雪婷, 任昊, 王洪章, 张吉旺, 赵斌, 任佰朝, 刘莹, 姚海燕, 刘鹏. 盐胁迫对不同耐盐型玉米品种叶片光合性能和干物质积累与分配的影响[J]. 作物学报, 2025, 51(4): 1091-1101.
[2] 宋利, 刘广周, 张华, 卢庭启, 卿春燕, 杨云山, 郭晓霞, 胡单, 李少昆, 侯鹏. 密植滴灌水肥一体化对西南夏玉米产量及土壤细菌群落的影响[J]. 作物学报, 2025, 51(4): 992-1004.
[3] 王岩, 白春生, 李波, 范虹, 何蔚, 杨莉莉, 曹悦, 赵财. 覆膜免耕和灌水量对西北绿洲灌区玉米产量及光合特性的影响[J]. 作物学报, 2025, 51(3): 755-770.
[4] 李翔宇, 季欣杰, 王雪莲, 龙安燃, 王峥宇, 杨子慧, 宫香伟, 姜英, 齐华. 秸秆还田配施氮肥对春玉米产量和籽粒品质的影响[J]. 作物学报, 2025, 51(3): 696-712.
[5] 辛雨宁, 任昊, 王洪章, 梁明磊, 于涛, 刘鹏. 喷施6-苄氨基腺嘌呤(6-BA)对授粉后高温胁迫下夏玉米籽粒灌浆及产量的影响[J]. 作物学报, 2025, 51(2): 418-431.
[6] 陈琛, 付修义, 陈传永, 吴珊珊, 张华生, 张春原, 陈绍江, 赵久然, 王元东. 不同玉米自交系的单倍体育种性能研究[J]. 作物学报, 2025, 51(2): 526-533.
[7] 钱玉平, 宿兵兵, 高吉星, 阮粉花, 李亚伟, 茅林春. 玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响[J]. 作物学报, 2025, 51(1): 273-284.
[8] 郝琪, 陈天陆, 王富贵, 王振, 白岚方, 王永强, 王志刚. 基于无人机多光谱数据和氮素空间分异的玉米冠层氮浓度估算[J]. 作物学报, 2025, 51(1): 189-206.
[9] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[10] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[11] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[12] 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10ZmCCT9ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970.
[13] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[14] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[15] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!