欢迎访问作物学报,今天是

作物学报

• •    

自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响

张世博1,*,李宏岩1,李培富1,任瑞华2,路海东3,*   

  1. 1 宁夏大学农学院, 宁夏银川 750021; 2 西北农林科技大学葡萄酒学院, 陕西杨凌 712100; 3 西北农林科技大学农学院, 陕西杨凌 712100
  • 收稿日期:2024-11-22 修回日期:2025-03-26 接受日期:2025-03-26 网络出版日期:2025-04-03
  • 基金资助:
    本研究由宁夏回族自治区粮食作物种质创制与生长调控创新团队项目(2022BSB03109)和陕西省重点研发计划项目(2022-NY-197)资助。

Effects of a 3–4°C increase in air temperature under natural conditions on root-shoot senescence and yield in plastic-film mulched maize

ZHANG Shi-Bo1,*,LI Hong-Yan1,LI Pei-Fu1,REN Rui-Hua2,LU Hai-Dong3,*   

  1. 1 School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China; 2 College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; 3 College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2024-11-22 Revised:2025-03-26 Accepted:2025-03-26 Published online:2025-04-03
  • Supported by:
    This study was supported by the Innovative Team for Germplasm Creation and Growth Regulation of Grain Crops in Ningxia Hui Autonomous Region (2022BSB03109) and the Key Research and Development Project of Shaanxi Province (2022-NY-197).

摘要:

随着近年来全球气温不断升高及骤旱频发,地膜春玉米早衰现象愈加严重,严重抑制了玉米产量的形成。目前,关于覆膜玉米早衰的研究主要集中在水分逆境胁迫与叶片关系方面,而覆膜增温对春玉米根-冠衰老的作用机理尚不明确。因此,基于以上问题,本研究于2021—2022年在西北半湿润易旱区的长武(年平均气温>9℃)和杨凌(年平均气温>12℃)进行了为期2年的田间试验。以裸地为对照(CK),从不改变地膜保水效应的角度出发,设置了透明地膜覆盖(TM)透明地膜+黑色聚乙烯网的双层覆盖(TM+BN)措施。以郑单958为供试材料,研究不同覆盖措施对旱地农田土壤环境、春玉米根系生长与衰老特性、叶片持绿特性及产量的影响。结果表明,与CK相比,覆盖处理增加了2个地点的土壤蓄水量,且覆盖处理间的平均土壤蓄水量无显著差异。同时,杨凌春玉米从三叶至成熟期(V3—R6)的平均表土温度比长武高2.1~2.3℃。在2个地点,TM下的平均表土温度比TM+BN显著增加2.0~2.2℃因此,相比TM,TM+BN适度的降温有利于后期土壤氮素供应,进而延长了春玉米生殖生长期10~12 d并增强了生育后期根系抗氧化能力和叶片持绿特性,使成熟期0~40 cm根系干重及地上部干物质积累量分别显著提高8.6%14.4%,最终较TM增加了春玉米产量18.5%~24.5%。这些结果表明,在未来全球变暖3~4℃的大背景下,在热量资源丰富的旱地农业区,将V3—R6期的平均表土温度保持在26.3~29.0℃有望延缓地膜玉米早衰并提高籽粒产量。本研究可为地膜玉米高产高效栽培及可持续生产提供科学理论依据。

关键词: 旱地, 地膜增温, 物候, 玉米根-冠衰老, 籽粒产量

Abstract:

With the ongoing rise in global temperatures and the increasing frequency of flash droughts, premature senescence in plastic film-mulched spring maize has become more severe, significantly limiting maize yield formation. Current research on this issue primarily focuses on the relationship between moisture stress and leaf characteristics, while the mechanisms underlying film-induced warming and its effects on root-shoot senescence in spring maize remain unclear. To address this knowledge gap, we conducted a two-year field experiment (2021–2022) in Changwu (average annual temperature > 9°C) and Yangling (average annual temperature > 12°C), two semi-humid, drought-prone regions in northwestern China. The experiment included a bare land control (CK) and two mulching treatments: transparent film mulching (TM) and dual mulching with transparent film and black polyethylene net (TM+BN), designed to maintain the film’s water retention effect while modifying soil temperature. Using ‘Zhengdan 958’ as the test variety, we investigated the effects of these mulching strategies on soil conditions, root growth and senescence, leaf stay-green characteristics, and yield performance in dryland maize farming. The results showed that, compared to CK, both mulching treatments increased soil water storage at both locations, with no significant differences in average soil water storage between TM and TM+BN. Meanwhile, the average topsoil temperature of spring maize in Yangling from the three-leaf stage to maturity (V3–R6) was 2.1–2.3°C higher than in Changwu. Across both locations, the average topsoil temperature under TM was 2.0–2.2°C higher than under TM+BN, indicating that TM+BN had a moderate soil cooling effect. Compared to TM, the soil cooling effect of TM+BN extended the reproductive growth period of spring maize by 10–12 days, improved nutrient supply during the late growth stages, and enhanced root antioxidant capacity and leaf greenness. As a result, root dry weight at 0–40 cm depth increased by 8.6%, aboveground dry matter accumulation at maturity increased by 14.4%, and grain yield improved by 18.5%–24.5% compared to TM. These findings suggest that, under projected global warming of 3–4°C, maintaining an average topsoil temperature between 26.3°C and 29.0°C during the V3–R6 period in heat-rich dryland agricultural regions may delay premature senescence in film-mulched maize and enhance grain yield. This study provides a scientific basis for high-yield, efficient cultivation and sustainable production of film-mulched maize in a warming climate. 

Key words: dryland, warming of plastic film, phenology, maize root-shoot senescence, grain yield

[1] IPCC. Climate Change 2021: The Physical Science Basis–Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary. 2021. Cambridge University Press, Cambridge, UK.

[2] Pokhrel Y, Felfelani F, Satoh Y, Boulange J, Burek P, Gädeke A, Gerten D, Gosling S N, Grillakis M, Gudmundsson L, et al. Global terrestrial water storage and drought severity under climate change. Nat Clim Change, 2021, 11: 226–233.

[3] Pastor A V, Palazzo A, Havlik P, Biemans H, Wada Y, Obersteiner M, Kabat P, Ludwig F. The global nexus of food-trade-water sustaining environmental flows by 2050. Nat Sustain, 2019, 2: 499–507.

[4] 邓铭江, 王全九, 陶汪海, 王子天, 曹晶晶. 西北旱区现代农业提质增效发展模式探究. 中国工程科学, 2023, 25(4): 59–72.
Deng M J, Wang Q J, Tao W H, Wang Z T, Cao J J. Development model for improving the quality and efficiency of modern agriculture in the arid region of northwest China. Strateg Study CAE, 2023, 25(4): 59–72 (in Chinese with English abstract).

[5] Chai Y W, Chai Q, Yang C G, Chen Y Z, Li R, Li Y W, Chang L, Lan X M, Cheng H B, Chai S X. Plastic film mulching increases yield, water productivity, and net income of rain-fed winter wheat compared with no mulching in semiarid Northwest China. Agric Water Manag, 2022, 262: 107420.

[6] Zhang S B, Zhang G X, Xia Z Q, Wu M K, Bai J X, Lu H D. Optimizing plastic mulching improves the growth and increases grain yield and water use efficiency of spring maize in dryland of the Loess Plateau in China. Agric Water Manag, 2022, 271: 107769.

[7] 殷文, 郭瑶, 范虹, 樊志龙, 胡发龙, 于爱忠, 赵财, 柴强. 西北干旱灌区不同地膜覆盖利用方式对玉米水分利用的影响. 中国农业科学, 2021, 54: 4750–4760.
Yin W, Guo Y, Fan H, Fan Z L, Hu F L, Yu A Z, Zhao C, Chai Q. Effects of different plastic film mulching and using patterns on soil water use of maize in arid irrigated area of northwestern China. Sci Agric Sin, 2021, 54: 4750–4760 (in Chinese with English abstract).

[8] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, . 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50: 1941–1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, et al. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017, 50: 1941–1959 (in Chinese with English abstract).

[9] Bu L D, Zhu L, Liu J L, Luo S S, Chen X P, Li S Q. Source-sink capacity responsible for higher maize yield with removal of plastic film. Agron J, 2013, 105: 591–598.

[10] Zhang S B, Bai J X, Zhang G X, Xia Z Q, Wu M K, Lu H D. Negative effects of soil warming, and adaptive cultivation strategies of maize: a review. Sci Total Environ, 2023, 862: 160738.

[11] Zhang S B, Xia Z Q, Wang Q, Fu Y F, Zhang G X, Lu H D. Soil cooling can improve maize root-shoot growth and grain yield in warm climate. Plant Physiol Biochem, 2023, 200: 107762.

[12] Leitner D, Meunier F, Bodner G, Javaux M, Schnepf A. Impact of contrasted maize root traits at flowering on water stress tolerance–a simulation study. Field Crops Res, 2014, 165: 125–137.

[13] 郭娅, 任昊, 王洪章, 张吉旺, 赵斌, 任佰朝, 刘鹏. 高温干旱复合胁迫抑制夏玉米光系统Ⅱ性能降低籽粒产量. 中国农业科学, 2024, 57: 42054220.
Guo Y, Ren H, Wang H Z, Zhang J W, Zhao B, Ren B Z, Liu P. High temperature and drought combined stress inhibited photosystem Ⅱ performance and decreased grain yield of summer maize. Sci Agric Sin, 2024, 57: 42054220 (in Chinese with English abstract).

[14] 陈亚宁, 李忠勤, 徐建华, 沈彦俊, 邢晓旭, 谢天, 李稚, 杨林山, 席海洋, 朱成刚, 等. 中国西北干旱区水资源与生态环境变化及保护建议. 中国科学院院刊, 2023, 38: 385–393.
Chen Y N, Li Z Q, Xu J H, Shen Y J, Xing X X, Xie T, Li Z, Yang L S, Xi H Y, Zhu C G, et al. Changes and protection suggestions in water resources and ecological environment in arid region of Northwest China. Bull Chin Acad Sci, 2023, 38: 385–393 (in Chinese with English abstract).

[15] 鲍士旦. 土壤农化分析(3). 北京: 中国农业出版社, 2000.
Bao S D. Soil and Agricultural Chemistry Analysis. 3rd edn. Beijing: China Agriculture Press, 2000 (in Chinese).

[16] Hu Y J, Ma P H, Duan C X, Wu S F, Feng H, Zou Y F. Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China. Agric Water Manag, 2020, 231: 106031.

[17] Qin X L, Li Y, Han Y L, Hu Y C, Li Y J, Wen X X, Liao Y C, Siddique K H M. Ridge-furrow mulching with black plastic film improves maize yield more than white plastic film in dry areas with adequate accumulated temperature. Agric For Meteor, 2018, 262: 206–214.

[18] Araghi A, Mousavi-Baygi M, Adamowski J. Detecting soil temperature trends in Northeast Iran from 1993 to 2016. Soil Tillage Res, 2017, 174: 177–192. 

[19] Wang D, Wang A H, Kong X H. Homogenization of the daily land surface temperature over the mainland of China from 1960 through 2017. Adv Atmos Sci, 2021, 38: 1811–1822.

[20] 惠晓丽, 马清霞, 王朝辉, 张翔, 罗来超. 基于旱地小麦高产优质的氮肥用量优化. 植物营养与肥料学报, 2020, 26: 233–244.
Hui X L, Ma Q X, Wang Z H, Zhang X, Luo L C. Optimization of nitrogen rate based on grain yield and nutrient contents in dryland wheat production. J Plant Nutr Fert, 2020, 26: 233–244 (in Chinese with English abstract). 

[21] 西, 谭军利, 孙权. 不同肥料用量及配比对设施土壤硝态氮含量的影响. 农业科学研究, 2011, 32(4): 14–17.
Wang X N, Tan J L, Sun Q. Research on the development in the industrialization of facility agriculture. J Agric Sci, 2011, 32(4): 14–17 (in Chinese with English abstract).

[22] Richardson A D, Keenan T F, Migliavacca M, Ryu Y, Sonnentag O, Toomey M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteor, 2013, 169: 156–173.

[23] Minoli S, Jägermeyr J, Asseng S, Urfels A, Müller C. Global crop yields can be lifted by timely adaptation of growing periods to climate change. Nat Commun, 2022, 13: 7079.

[24] 路海东, 薛吉全, 郭东伟, 郝引川, 陈鹏飞. 覆黑地膜对旱作玉米根区土壤温湿度和光合特性的影响. 农业工程学报, 2017, 33(5): 129–135.
Lu H D, Xue J Q, Guo D W, Hao Y C, Chen P F. Effects of black plastic film mulching on soil temperature and humidity in root zone and photosynthetic characteristics of rainfed maize. Trans CSAE, 2017, 33(5): 129–135 (in Chinese with English abstract). 

[25] El-Beltagi H S, Basit A, Mohamed H I, Ali I, Ullah S, Kamel E A R, Shalaby T A, Ramadan K M A, Alkhateeb A A, Ghazzawy H S. Mulching as a sustainable water and soil saving practice in agriculture: a review. Agronomy, 2022, 12: 1881.

[26] Kooyers N J. The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci, 2015, 234: 155–162.

[27] Stone P J, Sorensen I B, Jamieson P D. Effect of soil temperature on phenology, canopy development, biomass and yield of maize in a cool-temperate climate. Field Crops Res, 1999, 63: 169–178.

[28] Sabri N S A, Zakaria Z, Mohamad S E, Jaafar A B, Hara H. The use of soil cooling for growing temperate crops under tropical climate. Int J Environ Sci Technol, 2019, 16: 1449–1456.

[29] Al-Khatib K, Paulsen G M. Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions. Crop Sci, 1990, 30: 1127–1132.

[30] Hou F Y, Zhang L M, Xie B T, Dong S X, Zhang H Y, Li A X, Wang Q M. Effect of plastic mulching on the photosynthetic capacity, endogenous hormones and root yield of summer-sown sweet potato (Ipomoea batatas (L). Lam.) in Northern China. Acta Physiol Plant, 2015, 37: 164.

[31] Wang C B, Wang H, Zhao X M, Chen B H, Wang F L. Mulching affects photosynthetic and chlorophyll a fluorescence characteristics during stage III of peach fruit growth on the rain-fed semiarid Loess Plateau of China. Sci Hortic, 2015, 194: 246–254.

[32] Zhang X D, Yang L C, Xue X K, Kamran M, Ahmad I, Dong Z Y, Liu T N, Jia Z K, Zhang P, Han Q F. Plastic film mulching stimulates soil wet-dry alternation and stomatal behavior to improve maize yield and resource use efficiency in a semi-arid region. Field Crops Res, 2019, 233: 101–113.

[33] Li C, Wang Q S, Wang N J, Luo X Q, Li Y, Zhang T B, Feng H, Dong Q G. Effects of different plastic film mulching on soil hydrothermal conditions and grain-filling process in an arid irrigation district. Sci Total Environ, 2021, 795: 148886.

[34] Liu G Z, Hou P, Xie R Z, Ming B, Wang K R, Xu W J, Liu W M, Yang Y S, Li S K. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha−1. Field Crops Res, 2017, 213: 221–230.

[35] Bailey-Serres J, Parker J E, Ainsworth E A, Oldroyd G E D, Schroeder J I. Genetic strategies for improving crop yields. Nature, 2019, 575: 109–118.

[36] Li Y, Yang J B, Shi Z, Pan W H, Liao Y C, Li T, Qin X L. Response of root traits to plastic film mulch and its effects on yield. Soil Tillage Res, 2021, 209: 104930.

[37] Zhang X Y, Chen S Y, Sun H Y, Wang Y M, Shao L W. Root size, distribution and soil water depletion as affected by cultivars and environmental factors. Field Crops Res, 2009, 114: 75–83.

[38] Xu P P, Chen H Y, Cai W M. Transcription factor CDF4 promotes leaf senescence and floral organ abscission by regulating abscisic acid and reactive oxygen species pathways in Arabidopsis. EMBO Rep, 2020, 21: e48967.

[39] Du Q, Zhao X H, Xia L, Jiang C J, Wang X G, Han Y, Wang J, Yu H Q. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.). J Integr Agric, 2019, 18: 395–406.

[40] Guo R S, Zhang N, Wang L, Lin T, Zheng Z P, Cui J P, Tian L W. Subsoiling depth affects the morphological and physiological traits of roots in film-mulched and drip-irrigated cotton. Soil Tillage Res, 2023, 234: 105826.

[41] 中国气象局气候变化中心. 中国气候变化蓝皮书(2021). 北京: 中国学术期刊电子出版社, 2021.

    Climate Change Center of China Meteorological Administration. Blue Book on Climate Change in China 2021. Beijing: China Academic Journal Electronic Publishing House, 2021(in Chinese).

[42] Xiao D P, Liu D L, Feng P Y, Wang B, Waters C, Shen Y J, Qi Y Q, Bai H Z, Tang J Z. Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain. Agric Water Manag, 2021, 246: 106685.

[43] Xiao D P, Tao F L. Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. Eur J Agron, 2014, 52: 112–122.

[1] 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响[J]. 作物学报, 2025, 51(1): 207-220.
[2] 王丽萍, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 西北绿洲灌区玉米叶片衰老特征对不同地膜覆盖利用方式的响应[J]. 作物学报, 2025, 51(1): 233-246.
[3] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[4] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[5] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[6] 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042.
[7] 吴霞玉, 李盼, 韦金贵, 范虹, 何蔚, 樊志龙, 胡发龙, 柴强, 殷文. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079.
[8] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[9] 韦金贵, 毛守发, 江俞欣, 樊志龙, 胡发龙, 柴强, 殷文. 绿肥对减量施氮小麦籽粒产量和氮素利用的补偿机制[J]. 作物学报, 2024, 50(12): 3129-3143.
[10] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[11] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[12] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[13] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[14] 赵彩霞, 沈吉成, 尹淑香, 叶发慧, 杨淼思, 刘瑞娟, 刘德梅, 张怀刚, 沈裕虎, 陈文杰. 波兰小麦在青藏高原饲用性能的评价[J]. 作物学报, 2023, 49(11): 3017-3028.
[15] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!