• •
刘佳荟1,李雨龙1,王雅茹1,贺宏1,2,张云书2,吴郁1,曾秀丽3,刘廷辉4,陈国跃1,祁鹏飞1,魏育明1,江千涛1,*
LIU Jia-Hui1,LI Yu-Long1,WANG Ya-Ru1,HE Hong1,2,ZHANG Yun-Shu2,WU Yu1,ZENG Xiu-Li3,LIU Ting-Hui4,CHEN Guo-Yue1,QI Peng-Fei1,WEI Yu-Ming1,JIANG Qian-Tao1,*
摘要:
大麦是世界第四大禾谷类作物和我国藏区农牧民的主要口粮,其籽粒中淀粉含量高达50%~70%,是决定产量与品质的核心组分。淀粉含量直接影响籽粒粒重,而淀粉结构则决定其理化特性与水解性能,最终影响大麦的加工品质与用途。可溶性淀粉合酶SSIIa是支链淀粉合成的关键酶,其基因多态性对淀粉结构及功能具有重要调控作用。本研究以165份西藏大麦资源为材料,通过分子标记鉴定、淀粉组分及理化特性分析,系统解析了SSIIa基因自然变异对淀粉组成及特性的影响。结果表明,西藏大麦SSIIa基因存在2种主要自然变异类型(命名为SSIIa1与SSIIa2)。基于序列差异,开发了特异性分子标记用于高效基因分型,发现33 bp缺失是区分SSIIa1与SSIIa2基因型的共同关键特征。淀粉特性分析显示,相较于SSIIa1基因型,SSIIa2基因型材料的直链淀粉含量,B型淀粉粒的平均直径与体积占比,以及糊化温度均显著升高。本研究揭示了西藏大麦SSIIa基因的自然变异规律及其对淀粉品质关键指标的影响,为西藏大麦的品质定向改良与功能化利用提供了重要的分子靶点和理论基础。
[1] Punia S. Barley starch: structure, properties and in vitro digestibility: a review. Int J Biol Macromol, 2020, 155: 868–875. [2] 韦存虚, 张静, 钟方旭, 周卫东, 许如根, 马雷. 啤酒大麦与饲用大麦籽粒结构和淀粉粒的比较研究. 麦类作物学报, 2006, 26: 133–138. Wei C X, Zhang J, Zhong F X, Zhou W D, Xu R G, Ma L. Comparative study on grain structure and starch granules between malting barley and feed barley. J Triticeae Crops, 2006, 26: 133–138 (in Chinese with English abstract). [3] 赵神彳, 王辉, 康辉, 孔保华, 胡公社, 刘骞. 不同品种来源的大麦淀粉理化和功能特性的研究. 食品研究与开发, 2019, 40(20): 1–8. Zhao S C, Wang H, Kang H,Kong B H, Hu G S, Liu Q. Physicochemical and functional properties of starches from diverse barley varieties. Food Res Dev, 2019, 40(20): 1–8 (in Chinese with English abstract). [4] Ball S G, van de Wal M H B J, Visser R FG F. Progress in understanding the biosynthesis of amylose. Trends Plant Sci, 1998, 3: 462–467. [5] Jeon J S, Ryoo N, Hahn T R, Walia H, Nakamura Y. Starch biosynthesis in cereal endosperm. Plant Physiol Biochem, 2010, 48: 383–392. [6] 史盈盈, 谈宇婷, 张倩, 汤尚文, 李卫华, 豁银强. 小麦淀粉结构、特性及改性和应用研究进展. 食品科技, 2025, 50(1): 240–247. Shi Y Y, Tan Y T, Zhang Q, Tang S W, Li W H, Huo Y Q. Research progress on structure, properties, modification and applications of wheat starch. Food Sci Technol, 2025, 50(1): 240–247 (in Chinese with English abstract). [7] Ellis R P, Cochrane M P, Dale M F B, Duffus C M, Lynn A, Morrison I M, Prentice R D M, Swanston J S, Tiller S A. Starch production and industrial use. J Sci Food Agric, 1998, 77: 289–311. [8] Takeda Y, Takeda C, Mizukami H, Hanashiro I. Structures of large, medium and small starch granules of barley grain. Carbohydr Polym, 1999, 38: 109–114. [9] Crofts N, Nakamura Y, Fujita N. Critical and speculative review of the roles of multi-protein complexes in starch biosynthesis in cereals. Plant Sci, 2017, 262: 1–8. [10] Liu F S, Romanova N, Lee E A, Ahmed R, Evans M, Gilbert E P, Morell M K, Emes M J, Tetlow I J. Glucan affinity of starch synthase IIa determines binding of starch synthase I and starch-branching enzyme IIb to starch granules. Biochem J, 2012, 448: 373–387. [11] Luo J X, Ahmed R, Kosar-Hashemi B, Larroque O, Butardo V M Jr, Tanner G J, Colgrave M L, Upadhyaya N M, Tetlow I J, Emes M J, et al. The different effects of starch synthase IIa mutations or variation on endosperm amylose content of barley, wheat and rice are determined by the distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma. Theor Appl Genet, 2015, 128: 1407–1419. [12] Morell M K, Kosar-Hashemi B, Cmiel M, Samuel M S, Chandler P, Rahman S, Buleon A, Batey I L, Li Z Y. Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant J, 2003, 34: 173–185. [13] Wang B, Liu J, Chen X L, Xu Q, Zhang Y Z, Dong H X, Tang H P, Peng-Fei Q I, Deng M, Jian M A. Barley SS2a single base mutation at the splicing site led to obvious change in starch. J Integr Agric, 2025, 24: 1359–1371. [14] Kharabian-Masouleh A, Waters D L E, Reinke R F, Ward R, Henry R J. SNP in starch biosynthesis genes associated with nutritional and functional properties of rice. Sci Rep, 2012, 2: 557. [15] Nakamura Y, Francisco P B Jr, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N. Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol, 2005, 58: 213–227. [16] Umemoto T, Aoki N. Single-nucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinisation and starch association of the enzyme. Funct Plant Biol, 2005, 32: 763–768. [17] Pan Z F, Deng X Q, Li Q, Xie R, Zhai H S, Zeng X Q, Luobu Z X, Tashi N, Li Z Y. Effects of two starch synthase iia isoforms on grain components and other grain traits in barley. J Agric Food Chem, 2021, 69(4): 1206–1213. [18] Fu M Z, Zhang Y, Chen H J, Peng X W, Kan J Q. Effects of three hydrophilic colloids on gelatinization, retrogradation properties, microstructure of highland barley starch and the quality of highland barley noodles. Food Chem, 2025, 476:143424. [19] Wu Y Y, Liu Y N, Jia Y Q, Ren F Y, Zhou S M. Effect of different thermal treatments on starch digestion of Tsamba (Highland barley products): Insights from starch structural properties and enzyme activity. Food Chem., 2025, 473: 143054. [20] 王志龙, 王志伟, 乔祥梅, 程耿, 程加省, 于亚雄. 密度和氮肥对青稞‘云大麦12号’品质的影响. 中国农学通报, 2023, 39(16): 1–6. Wang Z L, Wang Z W, Qiao X M, Cheng G, Cheng J S, Yu Y X. Effects of planting density and nitrogen fertilizer on quality of hulless barley ‘Yun Damai 12’. Chin Agric Sci Bull, 2023, 39(16): 1–6 (in Chinese with English abstract). [21] Yang C H Y, Gong L X, Zhang Y, Jane J L. Pysicochemical properties of Tibetan hull-less barley starch. Carbohydr Polym, 2016, 137: 525–531. [22] Yamamori M, Endo T R. Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theor Appl Genet, 1996, 93: 275–281. [23] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321–4325. [24] South J B, Morrison W R. Isolation and analysis of starch from single kernels of wheat and barley. J Cereal Sci, 1990, 12: 43–51. [25] Du J, Qi Y J, Liu S Y, Xu B. Potential relation between starch granule-associated proteins and retrogradation properties of buckwheat starch. Int J Biol Macromol, 2024, 265: 130686. [26] Ma M T, Chen X J, Zhou R Z, Li H T, Sui Z Q, Corke H. Surface microstructure of rice starch is altered by removal of granule-associated proteins. Food Hydrocoll, 2021, 121: 107038. [27] Xu Z K, Song L L, Ming S X, Zhang C C, Li Z J, Wu Y Y, Sui Z Q, Corke H. Removal of starch granule associated proteins affects annealing of normal and waxy maize starches. Food Hydrocoll, 2022, 131: 107695. [28] Ferreon A C M, Ferreon J C, Wright P E, Deniz A A. Modulation of allostery by protein intrinsic disorder. Nature, 2013, 498: 390–394. [29] Ji T, Ge P, Zhang S, Wan C J, Liu H L, Qu X Z, Zhu F, Gong Q G, Xu W Y, Wang C, et al. Remote on-off switching of protein activity by intrinsically disordered region. Nat Struct Mol Biol, Published online [2025-06-04], https://doi.org/10.1038/s41594-025-01585-7. [30] Fan X Y, Zhu J, Dong W B, Sun Y D, Lv C, Guo B J, Xu R G. Comparative mapping and candidate gene analysis of SSIIa associated with grain amylopectin content in barley (Hordeum vulgare L.). Front Plant Sci, 2017, 8: 1531. [31] 宋巍伟, 霍冀川, 郭宝刚, 霍泳霖, 孙春芳. 不同直链含量高直链玉米淀粉糊化特性的研究. 玻璃, 2022, 49(6): 10–15. Song W W, Huo J C, Guo B G, Huo Y L, Sun C F. Study on the gelatinization properties of corn starch with different amylose contents. Glass, 2022, 49(6): 10–15 (in Chinese with English abstract). |
[1] | 王梦宁, 谢可冉, 高逖, 王飞, 任孝俭, 熊栋梁, 黄见良, 彭少兵, 崔克辉. 水稻幼穗分化期至抽穗期高温对籽粒形态和充实的影响及其与粒重的关系[J]. 作物学报, 2025, 51(5): 1347-1362. |
[2] | 王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响[J]. 作物学报, 2023, 49(7): 1968-1978. |
[3] | 张卫星;朱德峰;徐一成;林贤青;张玉屏;陈惠哲;赵致;周平. 不同水分条件下水稻籽粒形态及其与粒重的关系[J]. 作物学报, 2008, 34(10): 1826-1835. |
[4] | 翟红梅;田纪春. 小麦Wx基因突变体的建立及其淀粉特性的研究[J]. 作物学报, 2007, 33(07): 1059-1066. |
|