作物学报 ›› 2026, Vol. 52 ›› Issue (2): 421-432.doi: 10.3724/SP.J.1006.2026.51068
余开航**,周洪斌**,罗亮扎,王玫郦,姜瑞梅,董陈文华,李仕金,毛孝强,陈升位
Yu Kai-Hang**,Zhou Hong-Bin**,Luo Liang-Zha,Wang Mei-Li,Jiang Rui-Mei,Dong-Chen Wen-Hua,Li Shi-Jin,Mao Xiao-Qiang,Chen Sheng-Wei*
摘要:
解析亮氨酸富集重复型类受体激酶(leucine rich repeat receptor-like kinase,LRR-RLK)基因的功能和作用机制有利于揭示大麦发育和胁迫响应的分子机制。本研究以北青7号、Ynbs突变体和Morex等8个大麦品种(或品系)为材料,克隆了HvLRR-RLK-510基因的2904 bp CDS序列。8个材料HvLRR-RLK-510基因的CDS序列和编码蛋白氨基酸序列的相似性分别高于98.00%和99.70%。该蛋白具有亮氨酸富集重复结构域、跨膜结构域和激酶结构域等LRR-RLK的关键结构域,与小麦、水稻和拟南芥等植物LRR-RLK聚为1个亚类。RT-PCR检测和荧光定量检测结果表明,该基因在8个材料拔节期幼穗、叶鞘、叶、根和茎中差异表达,具有器官特异性和基因型依赖性,在幼穗中的表达更高效、基因型依赖性更低;亚细胞定位结果表明,编码蛋白位于本氏烟草叶细胞的细胞膜和液泡膜上。本研究为全面解析大麦HvLRR-RLK-510基因的功能和作用机制提供了基因资源和理论支持。
| [1] Chakraborty S, Nguyen B, Wasti S D, et al. Plant leucine-rich repeat receptor kinase (LRR-RK): structure, ligand perception, and activation mechanism. Molecules, 2019, 24: 3081. [2] 马媛媛, 甘睿, 王宁宁. 植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能. 植物生理与分子生物学学报, 2005, 31: 331–339. Ma Y Y, Gan R, Wang N N. Biological functions of leucine-rich repeat class of receptor-like protein kinases in plants. J Plant Physiol Mol Biol, 2005, 31: 331–339 (in Chinese with English abstract). [3] Morillo S A, Tax F E. Functional analysis of receptor-like kinases in monocots and dicots. Curr Opin Plant Biol, 2006, 9: 460–469. [4] Kobe B, Deisenhofer J. Proteins with leucine-rich repeats. Curr Opin Struct Biol, 1995, 5: 409–416. [5] Liu P L, Du L, Huang Y, et al. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol, 2017, 17: 47. [6] 林彦萍, 王义, 蒋世翠, 等. 植物类受体蛋白激酶研究进展. 基因组学与应用生物学, 2015, 34: 429–437. Lin Y P, Wang Y, Jiang S C, et al. Advance in research of plant receptor-like protein kinases. Genomics Appl Biol, 2015, 34: 429–437 (in Chinese with English abstract). [7] Rayapuram C, Jensen M K, Maiser F, et al. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. Mol Plant Pathol, 2012,13: 135–147. [8] Zhang X R. Leucine-rich repeat receptor-like kinases in plants. Plant Mol Biol Report, 1998, 16: 301–311. [9] Shiu S H, Bleecker A B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol, 2003, 132: 530–543. [10] Soltabayeva A, Dauletova N, Serik S, et al. Receptor-like kinases (LRR-RLKs) in response of plants to biotic and abiotic stresses. Plants (Basel), 2022, 11: 2660. [11] Schoof H, Lenhard M, Haecker A, et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, 100: 635–644. [12] Durbak A R, Tax F E. CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristems. Genetics, 2011, 189: 177–194. [13] Ogawa M, Shinohara H, Sakagami Y, et al. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science, 2008, 319: 294. [14] Nimchuk Z L, Zhou Y, Tarr P T, et al. Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases. Development, 2015, 142: 1043–1049. [15] Moon S, Jung K H, Lee D E, et al. The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size. Mol Cells, 2006, 21: 147–152. [16] Suzaki T, Sato M, Ashikari M, et al. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development, 2004, 131: 5649–5657. [17] Wang Z Y, Seto H, Fujioka S, et al. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 2001, 410: 380–383. [18] Sakaguchi J, Itoh J I, Ito Y, et al. COE1, an LRR-RLK responsible for commissural vein pattern formation in rice: COE1 regulates commissural vein formation. Plant J, 2010, 63: 405–416. [19] Shiu S H, Bleecker A B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA, 2001, 98: 10763–10768. [20] Sakai K, Citerne S, Antelme S, et al. BdERECTA controls vasculature patterning and phloem-xylem organization in Brachypodium distachyon. BMC Plant Biol, 2021, 21: 196. [21] Fischer I, Diévart A, Droc G, et al. Evolutionary dynamics of the leucine-rich repeat receptor-like kinase (LRR-RLK) subfamily in angiosperms. Plant Physiol, 2016, 170: 1595–1610. [22] Zhou F L, Guo Y, Qiu L J. Genome-wide identification and evolutionary analysis of leucine-rich repeat receptor-like protein kinase genes in soybean. BMC Plant Biol, 2016, 16: 58. [23] Sun J, Li L, Wang P, Zhang S, et al. Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes. BMC Genomics, 2017, 18: 763. [24] Shiu S H, Bleecker A B. Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE, 2001, 2001: re22. [25] Stone J M, Walker J C. Plant protein kinase families and signal transduction. Plant Physiol, 1995, 108: 451–457. [26] Shen L P, Liu Y Y, Zhang L L, et al. A transcriptional atlas identifies key regulators and networks for the development of spike tissues in barley. Cell Rep, 2023, 42: 113441. [27] Zhou H B, He J Y, Wang M Y, et al. Gene locus mapping and candidate gene screening for branched spike and its associated traits of the Ynbs mutant in barley. Agriculture, 2023, 13: 1934. [28] Wang W B, He J Y, Chen S W, et al. Construction of a high-density genetic map and fine mapping of a candidate gene locus for a novel branched-spike mutant in barley. PLoS One, 2020, 15: e0227617. [29] 王新天, 王卫斌, 陈升位, 等. 裸大麦突变体Ynbs-1的分枝穗特性及其遗传分析. 麦类作物学报, 2019, 39: 574–580. Wang X T, Wang W B, Chen S W, et al. Characteristics of branched-spike of hulless barley mutant-Ynbs-1 and its genetic analysis. J Triticeae Crops, 2019, 39: 574–580 (in Chinese with English abstract). [30] 董陈文华, 周洪斌, 郎雨萌, 等. 大麦LRR型类受体蛋白激酶基因HvLRR-RLK510启动子的克隆与功能验证. 麦类作物学报, 网络首发[2025-05-29], https://link.cnki.net/urlid/61.1359.s.20250528.1530.010. Dong-Chen W H, Zhou H B, Lang Y M, et al. Cloning and functional validation of the promoter of the LRR-Type receptor-like protein kinase gene HvLRR-RLK510 in barley. J Triticeae Crops, Published Online [2025-05-29], https://link.cnki.net/urlid/61.1359.s.20250528.1530.010 (in Chinese with English abstract). [31] 王梦玥, 罗振蒙, 詹开旺, 等. 大麦核仁蛋白基因HvNOP58的克隆和表达分析. 麦类作物学报, 2024, 44: 1087–1095. Wang M Y, Luo Z M, Zhan K W, et al. Cloning and expression characteristics of a nucleolar protein gene HvNOP58 in barley. J Triticeae Crops, 2024, 44: 1087–1095 (in Chinese with English abstract). [32] Roman A O, Jimenez-Sandoval P, Augustin S, et al. HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides. Nat Commun, 2022, 13: 876. [33] Jinn T L, Stone J M, Walker J C. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev, 2000, 14: 108–117. [34] Chen D, Guo H, Chen S, et al. Receptor-like kinase HAESA-like 1 positively regulates seed longevity in Arabidopsis. Planta, 2022, 256: 21. [35] 孙泽丹, 曾世荣, 孙小孟, 等. 玉米LRR-RLK基因家族鉴定和SIF亚家族表达模式分析. 玉米科学, 2024, 32(4): 19–30. Sun Z D, Zeng S R, Sun X M, et al. Genome-wide identification of the LRR-RLK gene family and SIF subfamily gene expression profiling in maize. J Maize Sci, 2024, 32(4): 19–30 (in Chinese with English abstract). [36] 阿依江·哈拜克, 杨敏, 韩玉珍. 拟南芥LRR-RLKs亚家族蛋白RLK6的亚细胞定位及RLK6的组织表达. 西北植物学报, 2014, 34: 1–6. A-Yi-Jiang H B K, Yang M, Han Y Z. Subcellular localization of RLK6, a protein of LRR-RLK subfamily and tissue expression pattern of the RLK6 in Arabidopsis. Acta Bot Boreali-Occident Sin, 2014, 34: 1–6 (in Chinese with English abstract). [37] Baudino S, Hansen S, Brettschneider R, et al. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta, 2001, 213: 1–10. [38] Parrott D L, Huang L, Fischer A M. Downregulation of a barley (Hordeum vulgare) leucine-rich repeat, non-arginine-aspartate receptor-like protein kinase reduces expression of numerous genes involved in plant pathogen defense. Plant Physiol Biochem, 2016, 100: 130–140. [39] 刘媛媛, 杨冬杰, 左东云, 等. 棉花GhD6PKL2的克隆及功能验证. 生物技术通报, 2021, 37(8): 111–120. Liu Y Y, Yang D J, Zuo D Y. et al. Cloning and functional verification of GhD6PKL2 from Gossypium hirsutum. Biotechnol Bull, 2021, 37(8): 111–120 (in Chinese with English abstract). [40] Mou SL, Meng Q Q, Gao F, et al. A cysteine-rich receptor-like protein kinase CaCKR5 modulates immune response against Ralstonia solanacearum infection in pepper. BMC Plant Biol, 2021, 21: 382. [41] 梁大曲, 石长双, 涂晶晶, 等. 马尾松PmSWEET基因的克隆、亚细胞定位及表达分析. 植物生理学报, 2022, 58: 447–457. Liang D Q, Shi C S, Tu J J, et al. Cloning, subcellular localization and expression analysis of PmSWEET gene in Pinus massoniana. Plant Physiol J, 2022, 58: 447–457 (in Chinese with English abstract). [42] 陆优社, 时明星, 王小虎, 等. 水稻OsABCC10基因的克隆及其功能分析. 分子植物育种, 2020, 18: 2776–2784. Lu Y S, Shi M X, Wang X H, et al. Cloning and functional analysis of OsABCC10 gene in rice. Mol Plant Breed, 2020, 18: 2776–2784 (in Chinese with English abstract). [43] 杨官显, 许海峰, 张静, 等. 苹果糖转运蛋白基因MdSWEET17的功能鉴定. 植物生理学报, 2018, 54: 1737–1745. Yang G X, Xu H F, Zhang J, et al. Functional identification of a sugar transporter gene MdSWEET17 in apple, Plant Physiol J, 2018, 54: 1737–1745 (in Chinese with English abstract). [44] 卢梦琪, 谭晓风, 周俊琴, 等. 油茶CoALMT9基因的克隆与表达分析. 植物生理学报, 2020, 56: 837–846. Lu M Q, Tan X F, Zhou J Q, et al. Cloning and expressional analysis of CoALMT9 gene in Camellia oleifera Abel. Plant Physiol J, 2020, 56: 837–846 (in Chinese with English abstract). [45] 徐亚, 滕梦鑫, 何岳东, 等. 香蕉NHX基因家族的鉴定及表达分析. 植物生理学报, 2021, 57: 681–691. Xu Y, Teng M X, He Y D, et al. Identification and expression analysis of NHX genes family in banana. Plant Physiol J, 2021, 57: 681–691 (in Chinese with English abstract). [46] 杨艳会, 杨恒, 张重义, 等. 地黄RgMATE6转运蛋白基因的克隆、亚细胞定位与表达分析. 中草药, 2021, 52: 1728–1734. Yang Y H, Yang H, Zhang Z Y, et al. Clone, subcellular localization and expression analysis of RgMATE6 transporter protein gene from Rehmannia glutinosa. Chin Trad Herbal Drugs, 2021, 52: 1728–1734 (in Chinese with English abstract). [47] Chen S, Chen J, Wang X C. Existence and characteristics of tonoplast-bound protein kinase in the tip cell of maize root. Acta Bot Sin, 2002, 44: 661–666. [48] Ouelhadj A, Kaminski M, Mittag M, et al. Receptor-like protein kinase HvLysMR1 of barley (Hordeum vulgare L.) is induced during leaf senescence and heavy metal stress. J Experimental Botany, 2007, 58: 1381–1396. [49] Ciesla A, Mituła1 F, Misztal L, et al. A role for barley calcium-dependent protein kinase CPK2a in the response to drought. Plant Sci, 2016, 7: 1550. |
| [1] | 张晴, 杨昱, 郭茜, 岳霈尧, 殷丛丛, 牛景萍, 赵晋忠, 杜维俊, 岳爱琴. 大豆GmARA6a的克隆及响应盐胁迫的功能分析[J]. 作物学报, 2026, 52(2): 480-493. |
| [2] | 何鹏旭, 姚立蓉, 陈远玲, 闫妍, 张宏, 汪军成, 李葆春, 杨轲, 司二静, 孟亚雄, 马小乐, 王化俊. 大麦干旱胁迫萌发生理及分子机理的差异性与相关性研究[J]. 作物学报, 2025, 51(9): 2412-2432. |
| [3] | 薛晓菲, 戴云静, 李熙林, 丁艳艳, 王翔, 雷长英, 韩焕勇, 贺道华. 陆地棉杜松烯合酶基因GhCDN10的特征及其在棉酚合成中功能分析[J]. 作物学报, 2025, 51(8): 2060-2076. |
| [4] | 陆雯佳, 汪军成, 姚立蓉, 张宏, 司二静, 杨轲, 孟亚雄, 李葆春, 马小乐, 王化俊. 大麦PRX基因家族全基因组鉴定及其干旱胁迫下的表达分析[J]. 作物学报, 2025, 51(5): 1198-1214. |
| [5] | 潘炬忠, 韦萍, 朱德平, 邵胜雪, 陈珊珊, 韦雅倩, 高维维. 水稻转录因子OsERF104的克隆和功能研究[J]. 作物学报, 2025, 51(4): 900-913. |
| [6] | 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887. |
| [7] | 张正康, 苏延红, 阮孙美, 张敏, 张攀, 张慧, 曾千春, 罗琼. 疣粒野生稻中OgXa13的克隆和功能研究[J]. 作物学报, 2025, 51(2): 334-346. |
| [8] | 王玉娇, 王永乐, 添长久, 郁春旺, 吕佳斌, 朱加保. 薏苡VQ4基因的克隆及耐盐性初步分析[J]. 作物学报, 2025, 51(12): 3198-3210. |
| [9] | 刘佳荟, 李雨龙, 王雅茹, 贺宏, 张云书, 吴郁, 曾秀丽, 刘廷辉, 陈国跃, 祁鹏飞, 魏育明, 江千涛. 西藏大麦SSIIa基因自然变异对淀粉组成及特性的影响[J]. 作物学报, 2025, 51(12): 3144-3156. |
| [10] | 马敏虎, 常华瑜, 陈朝燕, 仁增, 刘廷辉, 邢国芳, 郭刚刚. 苗草专用型大麦品种鉴定及全基因组关联分析[J]. 作物学报, 2025, 51(1): 91-102. |
| [11] | 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988. |
| [12] | 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589. |
| [13] | 孙曼, 安朝丹, 高广奇, 郭杰, 杨平, 蒋枞璁. 大麦稃壳白化突变性状的遗传解析[J]. 作物学报, 2024, 50(12): 3046-3054. |
| [14] | 鲁宗辉, 司二静, 叶霈颖, 汪军成, 姚立蓉, 马小乐, 李葆春, 王化俊, 尚勋武, 孟亚雄. 大麦籽粒β-葡聚糖含量的全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(10): 2483-2492. |
| [15] | 湛潇潇, 冯举伶, 张震欢, 张宏, 汪军成, 李葆春, 杨轲, 司二静, 孟亚雄, 马小乐, 王化俊, 姚立蓉. 大麦HvMBF1c耐盐机制分析[J]. 作物学报, 2024, 50(10): 2503-2514. |
|
||