• •
王玉娇1,王永乐1,添长久1,郁春旺1,吕佳斌2,朱加保1,*
WANG Yu-Jiao1,WANG Yong-Le1,TIAN Chang-Jiu1,YU Chun-Wang1,LYU Jia-Bin2,ZHU Jia-Bao1,*
摘要:
VQ蛋白是一类含有“VQ”保守结构域的植物特异性蛋白家族,在非生物胁迫响应和生长发育中的重要作用备受关注。本研究以“皖薏2号”为材料,利用生物信息学分析手段、荧光定量PCR技术、亚细胞定位、酵母双杂试验等对薏苡VQ4进行分子特征鉴定;通过酵母异源表达和过表达拟南芥验证其对盐胁迫的响应。结果表明,ClVQ4的开放阅读框长度为594 bp,编码197个氨基酸,并且ClVQ4是等电点为6.43的不稳定亲水性蛋白。顺式作用元件分析结果发现,ClVQ4基因启动子序列含有多个激素响应元件和逆境胁迫响应元件。ClVQ4基因的表达受到茉莉酸甲酯(MeJA)和脱落酸(ABA)的诱导,其表达量在盐胁迫下显著上调。亚细胞定位和酵母双杂结果表明,ClVQ4蛋白主要定位于细胞核和细胞膜中,并且可以和薏苡WRKY30相互作用,同时可以和其他VQ蛋白相互作用形成异源二聚体。在NaCl处理下,酿酒酵母异源表达ClVQ4基因可以提高酵母的存活率。在盐胁迫下,ClVQ4过表达拟南芥的萌发率和根长均显著高于野生型,且各转基因株系中POD、SOD和CAT活性均显著高于野生型,而MDA含量显著低于野生型。
[1] Cheng Y, Zhou Y, Yang Y, Chi Y J, Zhou J, Chen J Y, Wang F, Fan B F, Shi K, Zhou Y H, et al. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors. Plant Physiol, 2012, 159: 810–825. [2] Kim D Y, Kwon S I, Choi C, Lee H, Ahn I, Park S R, Bae S C, Lee S C, Hwang D J. Expression analysis of rice VQ genes in response to biotic and abiotic stresses. Gene, 2013, 529: 208–214. [3] Song W B, Zhao H M, Zhang X B, Lei L, Lai J S. Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize. Front Plant Sci, 2015, 6: 1177. [4] 凡超, 杨杰, 陈蓉, 刘伟, 向旭. 荔枝VQ基因家族鉴定及其对非生物胁迫的响应. 西北植物学报, 2024, 44: 739–750. Fan C, Yang J, Chen R, Liu W, Xiang X. Identification of the VQ gene family and their responses to abiotic stresses in Litchi chinensis. Acta Bot Boreali-Occident Sin, 2024, 44: 739–750 (in Chinese with English abstract). [5] 翟明明, 刘娜, 徐任园, 李欢欢, 王倩, 刘柏林, 汪奎, 方玉川, 郭东伟. 马铃薯VQ基因家族鉴定与表达分析. 农业生物技术学报, 2022, 30(1): 25–37. Zhai M M, Liu N, Xu R Y, Li H H, Wang Q, Liu B L, Wang K, Fang Y C, Guo D W. Identification and expression analysis of VQ gene family in Solanum tuberosum. J Agric Biotechnol, 2022, 30(1): 25–37 (in Chinese with English abstract). [6] Jing Y J, Lin R C. The VQ motif-containing protein family of plant-specific transcriptional regulators. Plant Physiol, 2015, 169: 371–378. [7] Wang Y J, Liu H L, Zhu D Y, Gao Y M, Yan H W, Xiang Y. Genome-wide analysis of VQ motif-containing proteins in Moso bamboo (Phyllostachys edulis). Planta, 2017, 246: 165–181. [8] Liu Y, Liu X L, Yang D D, Yin Z, Jiang Y L, Ling H, Huang N, Zhang D W, Wu J F, Liu L L, et al. A comprehensive identification and expression analysis of VQ motif-containing proteins in sugarcane (Saccharum spontaneum L.) under phytohormone treatment and cold stress. Int J Mol Sci, 2022, 23: 6334. [9] Zhai M M, Ao Z X, Qu H R, Guo D W. Overexpression of the potato VQ31 enhances salt tolerance in Arabidopsis. Front Plant Sci, 2024, 15: 1347861. [10] Yuan G B, Qian Y, Ren Y, Guan Y L, Wu X X, Ge C L, Ding H D. The role of plant-specific VQ motif-containing proteins: an ever-thickening plot. Plant Physiol Biochem, 2021, 159: 12–16. [11] Cai H Y, Zhang M, Liu Y H, He Q, Chai M N, Liu L P, Chen F Q, Huang Y M, Yan M K, Zhao H M, et al. Genome-wide classification and evolutionary and functional analyses of the VQ family. Trop Plant Biol, 2019, 12: 117–131. [12] Hao Z Y, Tian J F, Fang H, Fang L, Xu X, He F, Li S Y, Xie W Y, Du Q, You X M, et al. A VQ-motif-containing protein fine-tunes rice immunity and growth by a hierarchical regulatory mechanism. Cell Rep, 2022, 40: 111235. [13] He Q, He M, Zhang X L, Zhang X Y, Zhang W L, Dong J H, Li J X, Zhu Y L, Wang Y, Liu L W, et al. RsVQ4-RsWRKY26 module positively regulates thermotolerance by activating RsHSP70-20 transcription in radish (Raphanus sativus L.). Environ Exp Bot, 2023, 214: 105467. [14] Pan J J, Wang H P, Hu Y R, Yu D Q. Arabidopsis VQ18 and VQ26 proteins interact with ABI5 transcription factor to negatively modulate ABA response during seed germination. Plant J, 2018, 95: 529–544. [15] Ding H D, Yuan G B, Mo S R, Qian Y, Wu Y, Chen Q, Xu X Y, Wu X X, Ge C L. Genome-wide analysis of the plant-specific VQ motif-containing proteins in tomato (Solanum lycopersicum) and characterization of SlVQ6 in thermotolerance. Plant Physiol Biochem, 2019, 143: 29–39. [16] Ma J L, Li C H, Sun L L, Ma X C, Qiao H, Zhao W C, Yang R, Song S S, Wang S H, Huang H. The SlWRKY57-SlVQ21/SlVQ16 module regulates salt stress in tomato. J Integr Plant Biol, 2023, 65: 2437–2455. [17] Dong Q L, Zhao S, Duan D Y, Tian Y, Wang Y P, Mao K, Zhou Z S, Ma F W. Structural and functional analyses of genes encoding VQ proteins in apple. Plant Sci, 2018, 272: 208–219. [18] Dong Q L, Duan D Y, Zheng W Q, Huang D, Wang Q, Yang J, Liu C H, Li C, Gong X Q, Li C Y, et al. Overexpression of MdVQ37 reduces drought tolerance by altering leaf anatomy and SA homeostasis in transgenic apple. Tree Physiol, 2022, 42: 160–174. [19] Dong Q L, Duan D Y, Zheng W Q, Huang D, Wang Q, Li X R, Mao K, Ma F W. MdVQ37 overexpression reduces basal thermotolerance in transgenic apple by affecting transcription factor activity and salicylic acid homeostasis. Hortic Res, 2021, 8: 220. [20] Duan D Y, Zheng W Q, Shi M R, Yi R, Dong Q L, Yang J, Ma F W, Mao K. MdVQ37 negatively regulates apple resistance to Valsa canker via SA-dependent and SA-independent pathways. Mol Plant Pathol, 2025, 26: e70064. [21] 蒙秋伊, 杨玲玲, 尚昆, 李秀诗, 朱加保, 王玉娇, 付瑜华. 薏苡ramosa2基因的克隆及表达分析. 分子植物育种, 2023, 21: 6292–6299. Meng Q Y, Yang L L, Shang K, Li X S, Zhu J B, Wang Y J, Fu Y H. Cloning and expression analysis of ramosa2 gene in Coix lacryma-jobi L. Mol Plant Breed, 2023, 21: 6292–6299 (in Chinese with English abstract). [22] 李祥栋, 陆秀娟, 潘虹, 魏心元, 曾涛, 郭超, 陆平, 周美亮, 高爱农, 石明. 薏苡种仁主要脂质组分分类及特征分子筛选. 中国粮油学报, 2025, 40(4): 41–48. Li X D, Lu X J, Pan H, Wei X Y, Zeng T, Guo C, Lu P, Zhou M L, Gao A N, Shi M. Classification of principal lipid components and distinctive molecules selection in adlay seed (Coix lacryma-jobi L.). J Chin Cereals Oils Assoc, 2025, 40(4): 41–48 (in Chinese with English abstract). [23] 杨云, 周宇, 班秀文 ,周明强, 王健, 杨小雨, 雷静, 杨成龙. 干旱胁迫对薏苡幼苗形态和生理特征的影响. 分子植物育种, 网络首发[2023-07-07]. http://kns.cnki.net/kcms/detail/46.1068.S.20230706.1405.006.html. Yang Y, Zhou Y, Ban X W, Zhou M Q, Wang J, Yang X Y, Lei J, Yang C L. Effects of morphological and physiological characteristics of Coix lacryma-jobi L. seedlings under drought stress. Mol Plant Breed, Published online [2023-07-07]. http://kns.cnki.net/kcms/detail/46.1068.S.20230706.1405.006.html (in Chinese with English abstract). [24] 钟静, 王亮节, 曾国平, 黄纯. 锌胁迫对薏苡种子萌发和幼苗生长的影响. 北方园艺, 2020, (2): 113–118. Zhong J, Wang L J, Zeng G P, Huang C. Effects of zinc stress on seed germination and seedling growth of Job 's tears. North Hortic, 2020, (2): 113–118 (in Chinese with English abstract). [25] 黄玉兰, 向君亮, 蔡森, 曾伟光. 烯效唑影响薏苡幼苗叶片响应低温胁迫的蛋白质组学分析. 中国生物制品学杂志, 2019, 32: 742–749. Huang Y L, Xiang J L, Cai S, Zeng W G. Proteomic analysis of effect of uniconazole on response of Coix seedlings to low temperature stress. Chin J Biol, 2019, 32: 742–749 (in Chinese with English abstract). [26] 席国成, 刘福顺, 刘艳涛, 冯晓洁, 陈健, 王庆雷. 薏苡耐盐性研究. 河北农业科学, 2011, 15(10): 29–31. Xi G C, Liu F S, Liu Y T, Feng X J, Chen J, Wang Q L. Study on salt tolerance of Coix lacroyma-jobi L. J Hebei Agric Sci, 2011, 15(10): 29–31 (in Chinese with English abstract). [27] 田鑫, 钟程, 李性苑, 杨芩. 盐胁迫对薏苡种子萌发及幼苗生长的影响. 作物杂志, 2015, (2): 140–143. Tian X, Zhong C, Li X Y, Yang Q. Effects of salt stress on seed germination and seedling growth of Coix. Crops, 2015, (2): 140–143 (in Chinese with English abstract). [28] Wang Y J, Lu X Y, Fu Y H, Wang H J, Yu C, Chu J S, Jiang B L, Zhu J B. Genome-wide identification and expression analysis of VQ gene family under abiotic stress in Coix lacryma-jobi L. BMC Plant Biol, 2023, 23: 327. [29] Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot, 2009, 103: 551–560. [30] 敖茂宏, 宋智琴, 申刚, 蒙秋伊. 干旱胁迫对薏苡叶片生理指标及产量和籽粒品质的影响. 时珍国医国药, 2017, 28(1): 213–214. Ao M H, Song Z Q, Shen G, Meng Q Y. Effects of drought stress on physiological indexes and yield of Coix leaf and grain quality. Lishizhen Med Mater Med Res, 2017, 28(1): 213–214 (in Chinese with English abstract). [31] Huang H, Zhao W C, Li C H, Qiao H, Song S S, Yang R, Sun L L, Ma J L, Ma X C, Wang S H. SlVQ15 interacts with jasmonate-ZIM domain proteins and SlWRKY31 to regulate defense response in tomato. Plant Physiol, 2022, 190: 828–842. [32] Cheng X R, Wang Y J, Xiong R, Gao Y M, Yan H W, Xiang Y. A Moso bamboo gene VQ28 confers salt tolerance to transgenic Arabidopsis plants. Planta, 2020, 251: 99. [33] Zhang L L, Wang K K, Han Y X, Yan L Y, Zheng Y, Bi Z Z, Zhang X, Zhang X H, Min D H. Genome-wide analysis of the VQ motif-containing gene family and expression profiles during phytohormones and abiotic stresses in wheat (Triticum aestivum L.). BMC Genomics, 2022, 23: 292. [34] 王丽蓉, 黄丽霞, 杜萌, 易丹, 王劼, 杨鑫光. 白刺VQ基因家族的鉴定及分析. 西北农业学报, 2025, 34: 498–507. Wang L R, Huang L X, Du M, Yi D, Wang J, Yang X G. Identification and analysis of VQ gene family in Nitraria tangutorum bobr. Acta Agric Boreali-Occident Sin, 2025, 34: 498–507 (in Chinese with English abstract). [35] 郑逢盛, 王海华, 邬清韬, 申权, 田建红, 彭喜旭, 唐新科. 苦荞VQ基因家族的全基因组鉴定及其在叶斑病原与激素处理下的表达谱分析. 中国农业科学, 2021, 54: 4048–4060. Zheng F S, Wang H H, Wu Q T, Shen Q, Tian J H, Peng X X, Tang X K. Genome-wide identification of VQ gene family in Fagopyrum tataricum and its expression profiles in response to leaf spot pathogens. Sci Agric Sin, 2021, 54: 4048–4060 (in Chinese with English abstract). [36] Hu Y R, Chen L G, Wang H P, Zhang L P, Wang F, Yu D Q. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J, 2013, 74: 730–745. [37] Cheng X R, Yao H, Cheng Z M, Tian B B, Gao C, Gao W, Yan S N, Cao J J, Pan X, Lu J, et al. The wheat gene TaVQ14 confers salt and drought tolerance in transgenic Arabidopsis thaliana plants. Front Plant Sci, 2022, 13: 870586. [38] Zhang L L, Zheng Y, Xiong X X, Li H, Zhang X, Song Y L, Zhang X H, Min D H. The wheat VQ motif-containing protein TaVQ4-D positively regulates drought tolerance in transgenic plants. J Exp Bot, 2023, 74: 5591–5605. [39] Zhang K, Liu F, Wang Z X, Zhuo C J, Hu K N, Li X X, Wen J, Yi B, Shen J X, Ma C Z, et al. Transcription factor WRKY28 curbs WRKY33-mediated resistance to Sclerotinia sclerotiorum in Brassica napus. Plant Physiol, 2022, 190: 2757–2774. [40] Wang H P, Hu Y R, Pan J J, Yu D Q. Arabidopsis VQ motif-containing proteins VQ12 and VQ29 negatively modulate basal defense against Botrytis cinerea. Sci Rep, 2015, 5: 14185 |
[1] | 薛晓菲, 戴云静, 李熙林, 丁艳艳, 王翔, 雷长英, 韩焕勇, 贺道华. 陆地棉杜松烯合酶基因GhCDN10的特征及其在棉酚合成中功能分析[J]. 作物学报, 2025, 51(8): 2060-2076. |
[2] | 孟然, 李赵嘉, 冯薇, 陈悦, 刘路平, 杨春燕, 鲁雪林, 王秀萍. 大豆不同生育时期耐盐性综合评价及耐盐种质筛选[J]. 作物学报, 2025, 51(8): 1991-2008. |
[3] | 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887. |
[4] | 潘炬忠, 韦萍, 朱德平, 邵胜雪, 陈珊珊, 韦雅倩, 高维维. 水稻转录因子OsERF104的克隆和功能研究[J]. 作物学报, 2025, 51(4): 900-913. |
[5] | 蒋优, 马雪融, 张博, 李陈建. 苏丹草种子萌发期耐盐性评价及耐盐种质筛选[J]. 作物学报, 2025, 51(3): 835-844. |
[6] | 张正康, 苏延红, 阮孙美, 张敏, 张攀, 张慧, 曾千春, 罗琼. 疣粒野生稻中OgXa13的克隆和功能研究[J]. 作物学报, 2025, 51(2): 334-346. |
[7] | 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988. |
[8] | 刘欣玥, 郭潇阳, 王欣茹, 辛大伟, 关荣霞, 邱丽娟. 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选[J]. 作物学报, 2024, 50(8): 2122-2130. |
[9] | 李航, 刘丽, 黄乾, 刘文豪, 司爱君, 孔宪辉, 王旭文, 赵福相, 梅拥军, 余渝. 棉花种质资源萌发期耐盐性鉴定及筛选[J]. 作物学报, 2024, 50(5): 1147-1157. |
[10] | 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589. |
[11] | 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109. |
[12] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[13] | 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894. |
[14] | 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281. |
[15] | 靖小菁, 杨新笋, 靳晓杰, 刘意, 雷剑, 王连军, 柴沙沙, 张文英, 焦春海. 甘薯蔓割病(Fusarium oxysporum f. sp. batatas)相关基因IbMAPKK9的克隆与特性分析[J]. 作物学报, 2023, 49(12): 3289-3301. |
|