欢迎访问作物学报,今天是

作物学报

• •    

氮磷减施对不同强筋小麦品种产量和品质及其土壤生物学特性的影响

许倍铭**,郝紫瑞**,冯健超,马耕,王丽芳,谢迎新,王晨阳,马冬云*   

  1. 河南农业大学农学院 / 国家小麦工程技术研究中心, 河南郑州 450046
  • 收稿日期:2025-05-20 修回日期:2025-09-10 接受日期:2025-09-10 网络出版日期:2025-09-24
  • 通讯作者: 马冬云, E-mail: xmzxmdy@126.com
  • 基金资助:
    本研究由国家重点研发计划项目(2021YFF1000203)和河南省研究生教育改革与质量提升工程项目(YJS2024JD18)资助。

Effects of nitrogen and phosphorus reduction on grain yield, quality, and soil biological properties in strong-gluten wheat varieties

XU Bei-Ming**,HAO Zi-Rui**,FENG Jian-Chao,MA Geng,WANG Li-Fang,XIE Ying-Xin,WANG Chen-Yang,MA Dong-Yun*   

  1. College of Agronomy, Henan Agricultural University / National Engineering Research Center for Wheat, Zhengzhou 450046, Henan, China
  • Received:2025-05-20 Revised:2025-09-10 Accepted:2025-09-10 Published online:2025-09-24
  • Contact: 马冬云, E-mail: xmzxmdy@126.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2021YFF1000203) and the Postgraduate Education Reform and Quality Improvement Project of Henan Province (YJS2024JD18).

摘要:

为明确氮、磷减施对强筋小麦品种产量、品质及其土壤生物学特性的影响,本研究在大田条件下,以科兴3302、豫州118和新麦26为试验材料,于2021—2024年冬小麦生长季在河南开展氮、磷肥减施试验,分别设置常规施肥(N/P2O5/K2O240/135/135 kg hm-2)、减施氮肥(2021—2022年度为不施NP2O5/K2O按常规;2022—2024年度为常规施N处理下减施30%P2O5/K2O按常规)减施磷肥(2021—2022年度为不施P2O5N/K2O按常规;2022—2024年度常规施P2O5处理下减施30%N/K2O按常规)。结果表明,(1) 土壤特性方面:第1年度减施氮、磷肥对土壤全氮、全磷和有机质含量没有显著影响,而第2年度减氮处理下成熟期根际土壤全氮、全磷含量显著低于常规施肥。减施氮、磷肥处理下土壤硝态氮和铵态氮含量、脲酶、蔗糖酶和磷酸酶活性均表现下降,其中减氮处理较常规施肥显著下降。(2) 产量及其构成:在减施磷肥处理下3个强筋小麦产量与常规施肥相比差异不显著,但减氮处理第1年度产量与常规施肥之间无显著差异,第2~3年度则较常规施肥显著下降。减施氮、磷肥主要通过穗数的降低影响产量,其中减氮对产量的影响效应大于减磷,且随着年际的增加,影响效应加大。(3) 加工品质减施磷肥处理下,多数小麦品种加工品质仍符合强筋或中强筋小麦标准,而减施氮肥处理下各品种蛋白质含量、湿面筋含量和沉降值多呈显著下降趋势,其中蛋白含量平均下降0.85个百分点,沉降值降低4.49 mL,减施氮肥的影响效应大于减施磷肥。综上在本试验生态环境和土壤肥力条件下,从保障产量、品质和提升肥料生产效率的层面而言,第1年度不施氮肥、第2年度减氮30%可以在稳定产量、品质的基础上,氮肥偏生产力平均提高26.24%;第1年度不施磷肥、第2~3年度减磷30%,则相应磷肥偏生产力平均提高34.45%

关键词: 小麦, 氮肥减施, 磷肥减施, 土壤生物学特性, 产量

Abstract:

To evaluate the effects of nitrogen (N) and phosphorus (P) reduction on grain yield, quality, and soil biological properties in strong-gluten wheat varieties, a three-year field experiment (winter wheat seasons from 2021 to 2024) was conducted in Henan province using three cultivars: Kexing 3302, Yuzhou 118, and Xinmai 26. The experimental design included four treatments: (1) conventional fertilization (CF: N/P?O?/K?O = 240/135/135 kg hm?2), (2) nitrogen reduction (RN: no N application in 2021–2022, and 30% N reduction relative to CF in 2022–2024, with P and K maintained at CF levels), and (3) phosphorus reduction (RP: no P application in 2021–2022, and 30% P reduction in 2022–2024, with N and K maintained at CF levels). Results indicated that N and P reductions had no significant effects on soil total N (TN), total P (TP), or organic matter content in the first year. However, under RN treatment, TN and TP at maturity were significantly lower than those under CF during the 2022–2023 growing season. Both N and P reductions decreased soil nitrate-N and ammonium-N concentrations. Soil enzyme activities (urease, invertase, and phosphatase) showed declining trends under nutrient reduction, with RN causing significantly greater reductions than CF. P reduction had no significant effect on yield across all three varieties, while N reduction had no impact in the first year but led to significant yield losses in the second and third years. These losses were primarily due to reduced spike numbers, with RN having a more pronounced negative effect than RP, which intensified over time. Grain processing quality under RP generally met the standards for strong- or medium-strong gluten wheat, whereas RN significantly reduced protein content (by 0.85%) and sedimentation value (by 4.49 mL) compared to CF. The negative impact of RN on quality parameters was greater than that of RP. Under current agroecological and soil fertility conditions, omitting N fertilizer in the first year and applying a 30% N reduction in the second year maintained grain yield and quality while increasing N partial factor productivity by an average of 26.24%. Similarly, omitting P in the first year and applying a 30% P reduction in the second and third years stabilized yield and quality while improving P partial factor productivity by an average of 34.45%. These findings offer empirical support for optimizing fertilizer strategies in strong-gluten wheat production systems.

Key words: wheat, reduction of nitrogen fertilizer, reduction of phosphate fertilizer, soil biological properties, yield

[1] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质. 作物学报, 2023, 49: 1942–1953.

Dong Z Q, Lyu L H, Yao Y R, Zhang J T, Zhang L H, Yao H P, Shen H P, Jia X L. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction. Acta Agron Sin, 2023, 49: 1942–1953 (in Chinese with English abstract).

[2] Ma D Y, Zhang J, Hou J F, Li Y G, Huang X, Wang C Y, Lu H F, Zhu Y J, Guo T C. Evaluation of yield, processing quality, and nutritional quality in different-colored wheat grains under nitrogen and phosphorus fertilizer application. Crop Sci, 2018, 58: 402‒415.

[3] 马清霞, 王朝辉, 惠晓丽, 张翔, 张悦悦, 侯赛宾, 黄宁, 罗来超, 张世君, 党海燕. 基于产量和养分含量的旱地小麦施磷量和土壤有效磷优化. 中国农业科学, 2019, 52: 73‒85.
Ma Q X, Wang Z H, Hui X L, Zhang X, Zhang Y Y, Hou S B, Huang N, Luo L C, Zhang S J, Dang H Y. Optimization of phosphorus rate and soil available phosphorus based on grain yield and nutrient contents in dryland wheat production. Sci Agric Sin, 2019, 52: 73‒85 (in Chinese with English abstract).

[4] 马瑞琦, 常旭虹, 刘阿康, 王德梅, 陶志强, 王艳杰, 杨玉双, 王振林, 赵广才. 减量施氮协同提升强筋小麦产量和品质. 植物营养与肥料学报, 2023, 29: 172‒187.
Ma R Q, Chang X H, Liu A K, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Wang Z L, Zhao G C. Coordinated improvement of yield and quality of strong gluten wheat by reducing exogenous nitrogen application. J Plant Nutr Fert, 2023, 29: 172‒187 (in Chinese with English abstract).

[5] 于天一, 李晓亮, 路亚, 孙学武, 郑永美, 吴正锋, 沈浦, 王才斌. 磷对花生氮素吸收和利用的影响. 作物学报, 2019, 45: 912‒921.

Yu T Y, Li X L, Lu Y, Sun X W, Zheng Y M, Wu Z F, Shen P, Wang C B. Effect of phosphorus (P) on nitrogen (N) uptake and utilization in peanut. Acta Agron Sin, 2019, 45: 912‒921 (in Chinese with English abstract).

[6] 丁文成, 何萍, 周卫. 我国新型肥料产业发展战略研究. 植物营养与肥料学报, 2023, 29: 201221.
Ding W C, He P., Zhou W. Development strategies of the new-type fertilizer industry in China. J Plant Nutr Fert, 2023, 29: 201‒221 (in Chinese with English abstract).

[7] He R, Shao C F, Shi R G, Zhang Z Y, Zhao R. Development trend and driving factors of agricultural chemical fertilizer efficiency in China. Sustainability, 2020, 12: 4607.

[8] 刘钦普. 中国化肥施用强度及环境安全阈值时空变化. 农业工程学报, 2017, 33(6): 214‒221.
Liu Q P. Spatio-temporal changes of fertilization intensity and environmental safety threshold in China. Trans CSAE, 2017, 33(6): 214‒221 (in Chinese with English abstract).

[9] 喻丹, 董晓华, 高松, 江宇扬, 魏冲, 彭涛, 刘冀. 基于改进的最小累积阻力模型评价淮河流域氮肥面源污染风险. 农业工程学报, 2024, 40(24): 226‒235.
Yu D, Dong X H, Gao S, Jiang Y Y, Wei C, Peng T, Liu J. Evaluation of nitrogen non-point source pollution risk in the Huaihe River Basin based on an improved minimum cumulative resistance model. Trans CSAE, 2024, 40(24): 226‒235 (in Chinese with English abstract).

[10] 马红梅, 曹寒冰, 谢英荷, 李廷亮, 刘凯, 张奇茹, 姜丽伟, 曹静, 邵靖琳, 武文玥, 等. 晋南黄土旱塬小麦养分投入与化肥减施经济环境效应评价. 中国农业科学, 2021, 54: 2804‒2817.
Ma H M, Cao H B, Xie Y H, Li T L, Liu K, Zhang Q R, Jiang L W, Cao J, Shao J L, Wu W Y, et al. Evaluation on fertilizer application and its economic-environmental benefits associated with fertilizer reduction potential for dryland wheat in Loess Plateau of Southern Shanxi province. Sci Agric Sin, 2021, 54: 2804‒2817 (in Chinese with English abstract).

[11] 马永鑫, 谭军利, 韦广源, 王月梅, 田海梅, 王西娜. 减氮节水对引黄灌区春小麦耗水特征及水分利用效率的影响. 干旱地区农业研究, 2024, 42(6): 150‒160.
Ma Y X, Tan J L, Wei G Y, Wang Y M, Tian H M, Wang X N. Effects of nitrogen reduction and water saving on water consumption characteristics and water use efficiency of spring wheat in Ningxia Yellow River irrigation area. Agric Res Arid Areas, 2024, 42(6): 150‒160 (in Chinese with English abstract).

[12] 张琨, 秦毛毛, 刘艳喜, 秦海霞, 郑春风, 车军, 周正富, 吴政卿, 雷振生. 减量施氮对郑麦101产量及加工品质的影响. 河南农业科学, 2018, 47(5): 24‒27.
Zhang K, Qin M M, Liu Y X, Qin H X, Zheng C F, Che J, Zhou Z F, Wu Z Q, Lei Z S. Effects of reducing nitrogen application rate on grain yield and processing quality of Zhengmai 101. J Henan Agric Sci, 2018, 47(5): 24‒27 (in Chinese with English abstract).

[13] 牛轶男, 申丹丹, 丁永刚, 李子豪, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 减氮模式对稻茬中筋小麦籽粒产量、品质和氮肥效率的影响. 麦类作物学报, 2021, 41: 1524‒1533.
Niu Y N, Shen D D, Ding Y G, Li Z H, Zhu M, Li C Y, Zhu X K, Ding J F, Guo W S. Effect of nitrogen reduction models on grain yield, quality and nitrogen efficiency of medium-gluten wheat following rice. J Triticeae Crops, 2021, 41: 1524‒1533 (in Chinese with English abstract).

[14] 闫蓉, 朱利, 冉瑾怡, 杨文杰, 宫欢, 刘金山. 渭北旱地磷肥减施措施对冬小麦产量及磷吸收利用的影响. 植物营养与肥料学报,2023, 7: 1265‒1279.
Yan R, Zhu L, Ran J Y, Yang W J, Gong H, Liu J S. Effects of phosphorus reduction measures on winter wheat yield and phosphorus uptake and utilization in Weibei dryland. J Plant Nutr Fert, 2023, 29: 1265‒1279 (in Chinese with English abstract).

[15] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. pp 274‒325.
Guan S Y. Soil Enzyme and Its Research Method. Beijing: Agriculture Press, 1986. pp 274–325 (in Chinese).

[16] 高洪军, 朱平, 彭畅, 张秀芝, 李强, 张卫建. 等氮条件下长期有机无机配施对春玉米的氮素吸收利用和土壤无机氮的影响. 植物营养与肥料学报, 2015, 21: 318‒325.
Gao H J, Zhu P, Peng C, Zhang X Z, Li Q, Zhang W J. Effects of partially replacement of inorganic N with organic materials on nitrogen efficiency of spring maize and soil inorganic nitrogen content under the same N input. J Plant Nutr Fert, 2015, 21: 318‒325 (in Chinese with English abstract).

[17] 鲍士旦. 土壤农化分析. 3. 北京: 中国农业出版社, 2000. pp 79‒87.
Bao S D. Soil Agrochemical Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 79–87 (in Chinese).

[18] 吴金水, 林启美, 黄巧云, 肖和艾. 土壤微生物生物量测定方法及其应用. 北京: 气象出版社, 2006.
Wu J S, Lin Q M, Huang Q Y, Xiao H A. Methods of Measuring Soil Microbial Biomass and Their Applications. Beijing: China Meteorological Press, 2006 (in Chinese).

[19] Zhang X F, Zhu A N, Xin X L, Yang W L, Zhang J B, Ding S J. Tillage and residue management for long-term wheat-maize cropping in the North China Plain: I. Crop yield and integrated soil fertility index. Field Crops Res, 2018, 221: 157‒165.

[20] 丁世杰, 黄绍敏, 张水清, 郭斗斗, 宋晓, 张珂珂, 岳克, 郭腾飞. 长期施肥下土壤氮素指标与小麦/玉米产量关系研究. 核农学报, 2025, 39: 157‒169.
Ding S J, Huang S M, Zhang S Q, Guo D D, Song X, Zhang K K, Yue K, Guo T F. Study on the relationship between soil nitrogen indexes and wheat/maize yield under long-term fertilization. J Nucl Agric Sci, 2025, 39: 157‒169 (in Chinese with English abstract).

[21] 陈琛, 石柯, 朱长伟, 姜桂英, 罗澜, 孟威威, 刘芳, 申凤敏, 刘世亮. 种植密度和施氮量对豫北潮土区小麦光合特性和产量及土壤氮素的影响. 中国农业科导报, 2023, 25(5): 24‒33.
Chen C, Shi K, Zhu C W, Jiang G Y, Luo L, Meng W W, Liu F, Shen F M, Liu S L. Effects of planting density and nitrogen application rate on wheat photosynthetic characteristics, yield, and soil nitrogen content in fluvo-aquic soil in Northern Henan province. J Agric Sci Technol, 2023, 25(5): 24‒33 (in Chinese with English abstract).

[22] 王丽芳, 刘世洁, 康娟, 马耕, 王晨阳. 施氮对小麦根-冠及土壤碳氮特征的影响. 麦类作物学报, 2022, 42: 451‒456.
Wang L F, Liu S J, Kang J, Ma G, Wang C Y. Influence of nitrogen application on the carbon and nitrogen characteristics of root-shoot and soil in wheat filed. J Triticeae Crops, 2022, 42: 451‒456 (in Chinese with English abstract).

[23] 刘志平, 周怀平, 解文艳, 杨振兴, 马晓楠, 胡雪纯. 长期氮磷配施对褐土细菌多样性及土壤酶活性的影响. 干旱地区农业研究,2022, 40(2): 163‒171.
Liu Z P, Zhou H P, Xie W Y, Yang Z X, Ma X N, Hu X C. Effect of long-term combined application of nitrogen and phosphoruson bacterial diversity and soil enzyme activities in cinnamon soil. Agric Res Arid Areas, 2022, 40(2): 163‒171(in Chinese with English abstract).

[24] 盛基峰, 李垚, 于美佳, 韩艳英, 叶彦辉. 氮磷添加对高寒草地土壤养分和相关酶活性的影响. 生态环境学报, 2022, 31: 2302‒2309.
Sheng J F, Li Y, Yu M J, Han Y Y, Ye Y H. Effects of nitrogen and phosphorus an addition on soil nutrients and activity of related enzymes in alpine grassland. Ecol Environ Sci, 2022, 31: 2302‒2309 (in Chinese with English abstract).

[25] 姜彧宸, 冯月, 池田, 温强, 王爱萍, . 不同磷肥水平和种植模式对土壤养分含量和酶活性的影响. 山西农业科学, 2023, 51: 742‒749.
Jiang Y C, Feng Y, Chi T, Wen Q, Wang A P, Dong Q. Effects of different phosphate fertilizer levels and planting patterns on soil nutrient content and enzyme activity. J Shanxi Agric Sci, 2023, 51: 742‒749 (in Chinese with English abstract).

[26] 甘润, 齐鹏, 郭高文, 王晓娇, 蔡立群, 海龙, 张仁陟. 磷添加对陇中黄土高原旱作农田土壤呼吸组分特征与碳平衡的影响. 农业环境科学学报, 2023, 42: 599‒611.
Gan R, Qi P, Guo G W, Wang X J, Cai L Q, Hai L, Zhang R Z. Effects of phosphorus addition on soil respiration component characteristics and carbon balance in dry farmlands of the Loess Plateau, Longzhong, China. J Agro-Environ Sci, 2023, 42: 599‒611 (in Chinese with English abstract).

[27] 巨晓棠, 张翀. 论合理施氮的原则和指标. 土壤学报, 2021, 58: 1‒13.
Ju X T, Zhang C. The principles and indicators of rational N fertilization. Acta Pedol Sin, 2021, 58: 1‒13 (in Chinese with English abstract).

[28] 张铭, 蒋达, 缪瑞林, 许轲, 刘艳阳, 张军, 张洪程. 不同土壤肥力条件下施氮量对稻茬小麦氮素吸收利用及产量的影响. 麦类作物学报, 2010, 30: 135‒140.
Zhang M, Jiang D, Miao R L, Xu K, Liu Y Y, Zhang J, Zhang H C. Effects of N application rate on nitrogen absorption, utilization and yield of wheat under different soil fertility after rice. J Triticeae Crops, 2010, 30: 135‒140 (in Chinese with English abstract).

[29] 孙梦, 冯昊翔, 张晓燕, 刘世洁, 韩志栋, 韩潇杰, 李尊, 马耕, 王丽芳, 王晨阳. 不同土壤肥力下施氮量对小麦产量和品质的影响. 麦类作物学报, 2022, 42: 826–834.
Sun M, Feng H X, Zhang X Y, Liu S J, Han Z D, Han X J, Li Z, Ma G, Wang L F, Wang C Y. Effects of nitrogen rates on wheat yield and quality under different soil fertility regimes. J Triticeae Crops, 2022, 42: 826–834 (in Chinese with English abstract).

[30] 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响. 作物学报, 2025, 51: 207‒220.
Zhang J, Hu C, Zhou Q H, Ren K M, Dong S Y, Liu A H, Wu J Z, Huang M, Li Y J. Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat. Acta Agron Sin, 2025, 51: 207‒220 (in Chinese with English abstract).

[31] 钱彩虹, 陈立, 李春燕, 丁锦峰, 朱敏, 郭文善, 朱新开. 减量施氮对稻茬红皮强筋小麦产量、品质和氮盈亏的影响. 江苏农业科学,  2023, 51(9): 75–81.
Qian C H, Chen L, Li C Y, Ding J F, Zhu M, Guo W S, Zhu X K. Effects of reduced nitrogen application on yield, quality and apparent nitrogen budget of red-skinned strong-gluten wheat after rice. Jiangsu Agric Sci, 2023, 51(9): 75–81 (in Chinese with English abstract).

[32] 陈露, 王秀斌, 朱瑞利, 毛琳琳, 孙静文. 长江中下游小麦产量、土壤酶活性及微生物群落结构对磷肥减施的响应. 植物营养与肥料学报, 2021, 27: 392‒402.
Chen L, Wang X B, Zhu R L, Mao L L, Sun J W. Response of wheat yield and soil microbial activity to phosphorus fertilizer reduction in the middle and lower reaches of the Yangtze River. J Plant Nutr Fert, 2021, 27: 392‒402 (in Chinese with English abstract).

[33] 柳伟伟, 马宏亮, 樊高琼, 李勇, 莫飘, 郭翔. 生态条件和施磷量对四川不同筋力型小麦籽粒产量与蛋白质品质的影响. 麦类作物学报, 2018, 38: 298‒305.
Liu W W, Ma H L, Fan G Q, Li Y, Mo P, Guo X. Effect of phosphorus application on grain yield and protein quality of different gluten type wheat in Sichuan Province. J Triticeae Crops, 2018, 38: 298‒305 (in Chinese with English abstract).

[34] 张玉峰, 杨武德, 白晶晶, 王大成, 牛波, 冯美臣. 冬小麦产量与籽粒蛋白质含量协同变化特点及水肥调控. 中国农业科学, 2006, 39: 2449‒2458.
Zhang Y F, Yang W D, Bai J J, Wang D C, Niu B, Feng M C. Coordinated variation of yield and grain protein content in winter wheat and strategies of irrigation and fertilization. Sci Agric Sin, 2006, 39: 2449‒2458 (in Chinese with English abstract).

[35] 孙慧敏, 于振文, 颜红, 史桂萍. 不同土壤肥力条件下施磷量对小麦产量、品质和磷肥利用率的影响. 山东农业科学, 2006, 38(3): 45‒47.
Sun H M, Yu Z W, Yan H, Shi G P. Effect of phosphorus rate applied on yield, quality and phosphorus utilization ratio in winter wheat under different fertility soil. Shandong Agric Sci, 2006, 38(3): 45‒47 (in Chinese with English abstract).

[1] 胡润慧, 汪军成, 司二静, 张宏, 李兴茂, 马小乐, 孟亚雄, 王化俊, 刘青, 姚立蓉, 李葆春. 小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价[J]. 作物学报, 2025, 51(9): 2371-2386.
[2] 杨颖聪, 张俊豪, 唐一哲, 乔唱唱, 王鹏博, 黄明, 徐国伟, 王贺正. 秸秆还田和施磷量对旱地小麦籽粒淀粉及其合成相关酶活性的影响[J]. 作物学报, 2025, 51(9): 2467-2484.
[3] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[4] 郭保卫, 王旺, 王开, 王岩, 曾鑫, 景秀, 王晶, 倪新华, 许轲, 张洪程. 长江中下游两类型糯稻高产群体动态特征及超高产形成规律[J]. 作物学报, 2025, 51(9): 2433-2453.
[5] 付江鹏, 柳发财, 闫宝琴, 王永栋, 李利利, 魏玮, 周英霞. 控释肥替代普通尿素对旱作高粱干物质积累分配、产量和品质的影响[J]. 作物学报, 2025, 51(9): 2501-2513.
[6] 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466.
[7] 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398.
[8] 张海燕, 解备涛, 董顺旭, 张立明, 段文学. 滴灌条件下不同水溶肥种类和配比对鲜食甘薯产量和品质的影响[J]. 作物学报, 2025, 51(9): 2485-2500.
[9] 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284.
[10] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[11] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[12] 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127.
[13] 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175.
[14] 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250.
[15] 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!