欢迎访问作物学报,今天是

作物学报

• •    

长江中下游两类型糯稻高产群体动态特征及超高产形成规律

郭保卫1,王旺1,王开1,王岩1,曾鑫1,景秀1,王晶1,倪新华2,许轲1,张洪程1,*   

  1. 1 扬州大学江苏省作物栽培生理重点实验室 / 江苏省粮食作物现代产业技术协同创新中心 / 扬州大学水稻产业工程技术研究院, 江苏扬州 225009; 2 江苏省扬中市油坊镇农业农村局, 江苏扬中 212200
  • 收稿日期:2025-01-20 修回日期:2025-06-01 接受日期:2025-06-01 网络出版日期:2025-06-12
  • 基金资助:
    本研究由江苏省重点研发计划项目(BE2022338),镇江市“金山英才计划”产业强市领军人才引进计划项目(2021)和江苏高校优势学科建设工程项目(PAPD)资助。

Population dynamic characteristics and formation mechanisms of super high-yielding of two types of glutinous rice in the middle and lower reaches of the Yangtze River

GUO Bao-Wei1,WANG Wang1,WANG Kai1,WANG Yan1,ZENG Xin1,JING Xiu1,WANG Jing1,NI Xin-Hua2,XU Ke1,ZHANG Hong-Cheng1,*   

  1. 1 Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Rice Industry Engineering Technology Research Institute, Yangzhou University, Yangzhou 225009, Jiangsu, China; 2 Agriculture and Rural Bureau of Youfang Town, Yangzhong County, Jiangsu Province, Yangzhong 212200, Jiangsu, China
  • Received:2025-01-20 Revised:2025-06-01 Accepted:2025-06-01 Published online:2025-06-12
  • Supported by:
    This study was supported by the Key Research and Development Program of Jiangsu Province (BE2022338), the Leading Talent Introduction Program of Zhenjiang City’s Jinshan Talent Plan for Strong Industries (2021), and the Jiangsu Higher Education Institutions’ Advantage Discipline Construction Project (PAPD). 

摘要: 探究糯稻超高产群体特征及形成规律,为糯稻超高产栽培提供理论指导。本研究以常规粳型糯稻扬粳糯2号和籼粳杂交糯稻沭优糯82、沭优糯85为试验材料,研究分析不同糯稻高产(HY)、更高产(HRY)、超高产(SHY) 3种群体光合物质生产与转运、群体结构、抗倒伏特性与产量等特征,阐明糯稻超高产群体特征及形成规律。结果表明,(1) 与HY、HRY群体相比,糯稻SHY群体的群体颖花量极显著高于HY与HRY群体,千粒重和结实率与HY、HRY群体无显著差异。糯稻SHY群体具有大穗型特征,总颖花量高(常规粳型糯稻43,000×104hm?2以上、籼粳杂交糯稻60,000×104hm?2以上),并保持稳定的千粒重和结实率。(2) 有效临界叶龄期至拔节期糯稻不同产量等级群体的叶面积指数和光合势、群体净同化率基本无显著差异,抽穗期至成熟期各时期的叶面积指数、各光合势和群体净同化率,均表现为SHY群体>HRY群体>HY群体,而叶面积衰减率呈相反趋势,且三群体间同时期的各指标均差异极显著;(3) 有效临界叶龄期和拔节期各群体的干物质积累量无显著差异,抽穗期至成熟期SHY群体的干物质积累量均显著或极显著高于HRY与HY群体;有效临界叶龄期至拔节期及蜡熟期至成熟期,各产量等级的干物质积累速率均无显著差异;拔节期至乳熟期两阶段,SHY群体的干物质积累速率均极显著高于HRY与HY群体,而乳熟期至蜡熟期阶段,常规粳型糯稻的干物质积累速率各群体间无显著差异,籼粳杂交糯稻SHY群体的干物质积累速率显著高于HRY与HY群体。(4) 随着产量等级的提高,上三叶叶长变大,叶开角、叶基角、披垂度变小,株高增大,株型更加挺拔,基部第一、第二、第三节间略微增长增粗,显著增厚,抗折力显著增强,除常规粳型糯稻第三节间外,倒伏指数显著降低,抗倒伏能力增强。(5) 糯稻群体产量与抽穗期叶面积指数、抽穗期和成熟期干物质重、净积累量均呈极显著正相关,与成熟期叶面积指数呈显著正相关。糯稻超高产群体拥有较大穗型的安全库容量(常规粳型糯稻颖花量≥43,000×104hm?2、籼粳杂交糯稻颖花量≥60,000×104hm?2),为超高产群体提供库容基础;强大的穗后光合势、光合生产能力显著提高糯稻超高群体后期光合物质生产量;抽穗期后挺拔的株型与粗壮的茎秆形成较高的粒叶比,有利于增加干物质的高效积累与转运,以保障糯稻超高产群体安全稳定的充实。

关键词: 糯稻, 超高产, 不同产量群体, 产量构成, 群体特征

Abstract:

To investigate the characteristics and formation patterns of super high-yielding (SHY) populations in glutinous rice and to provide theoretical guidance for high-yield cultivation, we used three glutinous rice cultivars as experimental materials: the conventional japonica variety Yangjingnuo 2 and the indicajaponica hybrid varieties Shuyounuo 82 and Shuyounuo 85. We analyzed the photosynthetic production and translocation of assimilates, population structure, lodging resistance, and yield performance across high-yielding (HY), higher-yielding (HRY), and super high-yielding (SHY) glutinous rice populations to clarify their characteristics and formation mechanisms. The results showed as follows(1) Compared with HY and HRY populations, the SHY population had a significantly higher total spikelet number, while 1000-grain weight and seed setting rate were slightly lower, but not significantly different. SHY populations were characterized by large panicles and high total spikelet numbers (exceeding 43,000×104 hm?2 in conventional japonica and 60,000×104 hm?2 in hybrid types), while maintaining stable 1000-grain weight and seed setting rate. (2) From the effective critical leaf age to the jointing stage, there were no significant differences in leaf area index (LAI) or photosynthetic potential among yield types. However, from heading to maturity, both LAI and photosynthetic potential followed the order SHY > HRY > HY, while leaf area decay rate showed the opposite trend. Differences among the three yield types were highly significant during this period. (3) No significant differences in dry matter accumulation were observed from the critical leaf age to the booting stage. However, from heading to maturity, SHY populations accumulated significantly more dry matter than HRY and HY. During the booting to milky stage, SHY also showed a significantly higher dry matter accumulation rate. From the milky to waxy stage, the accumulation rate did not differ significantly in the conventional japonica type, but in the hybrid indicajaponica type, SHY populations still exhibited a significantly higher rate than HRY and HY. (4) With increasing yield grade, the top three leaves became longer, with smaller opening and base angles and reduced drooping; plant height increased, and the plant architecture became more upright. The first, second, and third basal internodes increased significantly in length, thickness, and width, contributing to enhanced stem strength and lodging resistance. Except for the third internode in conventional glutinous rice, the lodging index significantly decreased with higher yield grades. (5) In both glutinous rice types, population yield was significantly correlated with LAI at heading, dry matter weight at heading and maturity, and net dry matter accumulation. A strong positive correlation was also found between yield and LAI at maturity. SHY populations possessed a large and stable sink capacity (panicle size), a strong photosynthetic source capacity after panicle initiation, and an upright plant type with high stem strength and lodging resistance. These traits contribute to increased late-stage photosynthate production and dry matter accumulation, supporting a favorable grain-to-leaf ratio for safe and stable grain filling.

Key words: glutinous rice, super-high yield, different yield groups, yield and its components, group characteristics

[1] 刘宇强, 刘晴, 高世伟, 聂守军, 谢树鹏, 魏中华, 王翠玲, 刘立超. 黑龙江省主栽糯稻遗传背景研究. 中国稻米, 2016, 22(1): 22–24.
Liu Y Q, Liu Q, Gao S W, Nie S J, Xie S P, Wei Z Q, Wang C L, Liu L C. Research on genetic background of main cultivated glutinous rice in Heilongjiang province. China Rice, 2016, 22(1): 22–24 (in Chinese with English abstract).

[2] 朱军, 朱自忠, 李平. 中国糯稻遗传育种研究进展. 杂交水稻, 2021, 36(1): 18.
Zhu J, Zhu Z Z, Li P. Research progress on genetics and breeding of glutinous rice in China. Hybrid Rice, 2021, 36(1): 1–8 (in Chinese with English abstract).

[3] Jaiturong P, Sirithunyalug B, Eitsayeam S, Asawahame C, Tipduangta P, Sirithunyalug J. Preparation of glutinous rice starch/polyvinyl alcohol copolymer electrospun fibers for using as a drug delivery carrier. Asian J Pharm Sci, 2018, 13: 239–247.

[4] 陈双琴. 糯稻种质胚乳淀粉消化特性及其结构特征分析. 云南农业大学硕士学位论文, 云南昆明, 2023.
Chen S Q. Analysis of Starch Digestibility and Structural Characteristics of Endosperm in Waxy Rice Germplasm. MS Thesis of Yunnan Agricultural University, Kunming, Yunnan, China, 2023 (in Chinese with English abstract).

[5] 郭桂英, 沈光辉, 马汉云, 霍二伟, 祁玉良, 徐士库, 申关望, 黄雅琴, 彭波, 常幸远, . 专用稻研究进展及市场化开发. 江苏农业科学, 2024, 52(7): 2433. 

Guo G Y, Shen G H, Ma H Y, Huo E W, Qi Y L, Xu S K, Shen G W, Huang Y Q, Peng B, Chang X Y, et al. Research progress and market-oriented development of specialized rice. Jiangsu Agric Sci, 2024, 52(7): 24–33 (in Chinese).

[6] 潘骏亚. 安徽省怀远县糯稻特色产业发展现状及对策研究. 粮食问题研究, 2024, (2): 711.
Pan J Y. Development status and countermeasures of characteristic industry of glutinous rice in Huaiyuan County, Anhui Province. Grain Issues Res, 2024, (2): 7–11 (in Chinese).

[7] 陈先兵, 田玉霞, 王文丰, 曹鹏, 薛莲. 湖北省籼型糯稻产业发展路径及对策. 中国种业, 2023(11): 37–39.
Chen X B, Tian Y X, Wang W F, Cao P, Xue L. Development path and countermeasures of industrialization on indica glutinous rice in Hubei province. China Seed Ind, 2023(11): 37–39 (in Chinese). 

[8] 张丽娟. 优质糯稻丹粳糯3号的选育及高产栽培技术. 辽宁农业科学, 2020, (1): 8687.
Zhang L J. Breeding and high-yield cultivation techniques of good-quality waxy rice ‘danjingnuo No. 3’. Liaoning Agric Sci, 2020, (1): 86–87 (in Chinese with English abstract). 

[9] 张庆, 徐玉峰, 凃荣文, 张小英, 徐洁芬, 徐晓杰. 苏南太湖流域优质高产晚粳糯稻新品种筛选. 农业工程技术, 2023, 43(31): 16.
Zhang Q, Xu Y F, Tu R W, Zhang X Y, Xu J F, Xu X J. Screening of new late japonica glutinous rice varieties with good quality and high yield in Taihu Lake basin of southern Jiangsu province. Agric Eng Technol, 2023, 43(31): 16 (in Chinese).

[10] 全坚宇, 朱正斌, 曹敏旭, 赵品恒, 赵旭昊, 何胥. 地方特色糯稻“鸭血糯” 品种特性及机插高产栽培技术. 农业开发与装备, 2023, (7): 3738.
Quan J Y, Zhu Z B, Cao M X, Zhao P H, Zhao X H, He X. Characteristics of glutinous rice varieties with local characteristics “Ya Xue Nuo” and its high-yield cultivation techniques by mechanical transplanting. Agric Dev Equip, 2023(7): 37–38 (in Chinese).

[11] Wei Z W, Zhang Y Z, Jin W Y. Yield gap analysis of super high-yielding rice (>15 t ha–1) in two ecological regions. Agriculture, 2024, 14: 491.

[12] Meng X S, Pan Y H, Chai Y X, Ji Y, Du H S, Huang J, Chen S X, Wang M, Guo S W. Higher light utilization and assimilate translocation efficiency produced greater grain yield in super hybrid rice. Plant Soil, 2024, 504: 529–544.

[13] Ye J Y, Zhong X F, Harrison M T, Kang K, Sheng T, Shang C, Wang C H, Deng J, Huang L Y, Tian X H, et al. Towards improved grain yield and soil microbial communities of super hybrid rice through sustainable management. Agronomy, 2023, 13: 2259.

[14] 董立强, 杨铁鑫, 李睿, 商文奇, 马亮, 李跃东, 隋国民. 株行距配置对超高产田水稻产量及根系形态生理特性的影响. 中国水稻科学, 2023, 37: 392–404.
Dong L Q, Yang T X, Li R, Shang W Q, Ma L, Li Y D, Sui G M. Effect of plant-row spacing on rice yield and root morphological and physiological characteristics in super high yield field. Chin J Rice Sci, 2023, 37: 392–404 (in Chinese with English abstract).

[15] Tao Z, Lei T, Cao F B, Chen J N, Yin X H, Liang T F, Huang M. Contrasting characteristics of lodging resistance in two super-rice hybrids differing in harvest index. Phyton, 2022, 91: 429–437.

[16] Chen T T, Yang X Q, Fu W M, Li G Y, Feng B H, Fu G F, Tao L X. Strengthened assimilate transport improves yield and quality of super rice. Agronomy, 2022, 12: 753. 

[17] Wang F, Peng S B. Yield potential and nitrogen use efficiency of China’s super rice. J Integr Agric, 2017, 16: 1000–1008.

[18] Huang M, Tang Q Y, Ao H J, Zou Y B. Yield potential and stability in super hybrid rice and its production strategies. J Integr Agric, 2017, 16: 1009–1017.

[19] 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 等. 水稻甬优12产量13.5 t hm–2以上超高产群体的生育特征. 作物学报, 2014, 40: 2149–2159.
Wang X Y, Wei H H, Zhang H C, Sun J, Zhang J M, Li C, Lu H B, Yang J W, Ma R R, Xu J F, et al. Population characteristics for super-high yielding hybrid rice Yongyou 12 (>13.5 t ha –1). Acta Agron Sin, 2014, 40: 2149–2159 (in Chinese with English abstract). 

[20] 周年兵, 程飞虎, 陈波, 舒鹏, 张洪程, 花劲, 霍中洋, 黄大山, 陈忠平, 陈国梁, . 籼粳杂交晚稻超高产结构及群体生长特征研究. 扬州大学学报(农业与生命科学版), 2016, 37(1): 5864.
Zhou N B, Cheng F H, Chen B, Shu P, Zhang H C, Hua J, Huo Z Y, Huang D S, Chen Z P, Chen G L, et al. Study on yield components and population characteristics of super-high-yielding late indica-japonica hybrid rice. J Yangzhou Univ (Agric Life Sci Edn), 2016, 37(1): 58–64 (in Chinese with English abstract).

[21] Wei H Y, Zhang H C, Blumwald E, Li H L, Cheng J Q, Dai Q G, Huo Z Y, Xu K, Guo B W. Different characteristics of high yield formation between inbred Japonica super rice and inter-sub-specific hybrid super rice. Field Crops Res, 2016, 198: 179–187. 

[22] 胡雅杰, 朱大伟, 钱海军, 曹伟伟, 邢志鹏, 张洪程, 周有炎, 陈厚存, 汪洪洋, 戴其根, 等. 籼粳杂交稻甬优2640钵苗机插超高产群体若干特征探讨. 作物学报, 2014, 40: 2016–2027.
Hu Y J, Zhu D W, Qian H J, Cao W W, Xing Z P, Zhang H C, Zhou Y Y, Chen H C, Wang H Y, Dai Q G, et al. Some characteristics of mechanically transplanted pot seedlings in super high yielding population of indica-japonica hybrid rice Yongyou 2640. Acta Agron Sin, 2014, 40: 2016–2027 (in Chinese with English abstract).

[23] 陶士宝, 柯健, 孙杰, 尹传俊, 朱铁忠, 陈婷婷, 何海兵, 尤翠翠, 郭爽爽, 武立权. 长江中下游地区不同穗型中籼杂交稻高产群体农艺特征. 作物学报, 2023, 49: 511–525.
Tao S B, Ke J, Sun J, Yin C J, Zhu T Z, Chen T T, He H B, You C C, Guo S S, Wu L Q. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River. Acta Agron Sin, 2023, 49: 511–525 (in Chinese with English abstract).

[24] 吕伟生, 曾勇军, 石庆华, 潘晓华, 黄山, 商庆银, 谭雪明, 方加海. 双季机插稻不同产量水平群体的产量构成特征研究. 核农学报, 2019, 33: 20482057.
Lyu W S, Zeng Y J, Shi Q H, Pan X H, Huang S, Shang Q Y, Tan X M, Fang J H. Characteristics of yield components from middle-yield to super-high-yield of machine-transplanted double rice. J Nucl Agric Sci, 2019, 33: 2048–2057 (in Chinese with English abstract).

[25] 花劲, 周年兵, 张军, 张洪程, 霍中洋, 周培建, 程飞虎, 李国业, 黄大山, 陈忠平, 等. 双季晚稻甬优系列籼粳杂交稻超高产结构与群体形成特征. 中国农业科学, 2015, 48: 1023–1034.
Hua J, Zhuo N B, Zhang J, Zhang H C, Huo Z Y, Zhou P J, Cheng F H, Li G Y, Huang D S, Chen Z P, et al. The structure and formation characteristics of super-high yield population with late Yongyou series of indica-japonica hybrid rice in double-cropping rice area. Sci Agric Sin, 2015, 48: 1023–1034 (in Chinese with English abstract).

[26] 杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006, 39: 13361345.
Yang J C, Du Y, Wu C F, Liu L J, Wang Z Q, Zhu Q S. Growth and development characteristics of super-high-yielding mid-season japonica rice. Sci Agric Sin, 2006, 39: 1336–1345 (in Chinese with English abstract).

[27] 龚金龙, 胡雅杰, 龙厚元, 常勇, 李杰, 张洪程, 马荣荣, 王晓燕, 戴其根, 霍中洋, . 大穗型杂交粳稻产量构成因素协同特征及穗部性状. 中国农业科学, 2012, 45: 21472158.
Gong J L, Hu Y J, Long H Y, Chang Y, Li J, Zhang H C, Ma R R, Wang X Y, Dai Q G, Huo Z Y, et al. Study on collaborating characteristics of grain yield components and panicle traits of large panicle hybrid japonica rice. Sci Agric Sin, 2012, 45: 2147–2158 (in Chinese with English abstract). 

[28] 张祥明, 郭熙盛, 闫永忠. 沿淮晚稻区优化施肥对粳糯生长和产量的影响. 中国稻米, 2007, 13(5): 6265.
Zhang X M, Guo X S, Yan Y Z. Effect of optimized fertilization on the growth and yield of japonica and waxy rice in late rice area along Huaihe River. China Rice, 2007, 13(5): 62–65 (in Chinese).

[29] 王阳青, 李双盛, 游月华. 籼糯稻的产量构成因素和库源结构分析. 福建农业科技, 2005, 36(4): 13.
Wang Y Q, Li S S, You Y H. Analysis of yield components and sink-source structure of indica glutinous rice. Fujian Agric Sci Technol, 2005, 36(4): 1–3 (in Chinese).

[30] 郝留根, 张宏伟, 甘雨, 郭慧, 李树杏, 潘建慧, 龚大琨. 杂交糯稻新品种黔糯优11主要农艺性状与产量的相关性. 农技服务, 2018, 35(6): 24–26.
Hao L G, Zhang H W, Gan Y, Guo H, Li S X, Pan J H, Gong D K. Correlation between main agronomic characters and yield of a new hybrid glutinous rice variety Qiannuoyou 11. Agric Technol Serv, 2018, 35(6): 24–26 (in Chinese).

[31] 张洪程, 赵品恒, 孙菊英, 吴桂成, 徐军, 端木银熙, 戴其根, 霍中洋, 许轲, 魏海燕. 机插杂交粳稻超高产形成群体特征. 农业工程学报, 2012, 28(2): 3944.
Zhang H C, Zhao P H, Sun J Y, Wu G C, Xu J, Duanmu Y X, Dai Q G, Huo Z Y, Xu K, Wei H Y. Population characteristics of super high yield formation of mechanical transplanted japonica hybrid rice. Trans CSAE, 2012, 28(2): 39–44 (in Chinese with English abstract).

[32] 韦还和, 姜元华, 赵可, 许俊伟, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郑飞. 甬优系列杂交稻品种的超高产群体特征. 作物学报, 2013, 39: 22012210.
Wei H H, Jiang Y H, Zhao K, Xu J W, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Zheng F. Characteristics of super-high yield population in yongyou series of hybrid rice. Acta Agron Sin, 2013, 39: 2201–2210 (in Chinese with English abstract).

[33] 汪家凯, 陈文丰, 彭菁菁, 刘彦卓, 梁开明, 李晨, 毛兴学, 潘俊峰. 华南超大穗型水稻种质DS23“源-库-流”特征及其超高产潜力研究. 广东农业科学, 2023, 50(12): 150–159.
Wang J K, Chen W F, Peng J J, Liu Y Z, Liang K M, Mao X X, Pan J F. Source-sink-flow characteristics and super-high yield potential of the super-large-panicle rice line DS23 in South China. Guangdong Agric Sci, 2023, 50(12): 150–159 (in Chinese with English abstract).

[34] 王士强, 贺登美, 赵海红, 杨善伟, 衣玉卓, 付永明, 郑树生, 丁希武, 何晴, 郑凯文, 等. 不同产量水平寒地早粳稻品种的株型特征. 中国稻米, 2023, 29(2): 71–75.
Wang S Q, He D M, Zhao H H, Yang S W, Yi Y Z, Fu Y M, Zheng S S, Ding X W, He Q, Zheng K W, et al. Plant-type characteristics in different yield early japonica rice varieties in cold region. China Rice, 2023, 29(2): 71–75 (in Chinese with English abstract).

[35] 杜永, 王艳, 王学红, 孙乃立, 杨建昌. 黄淮地区不同粳稻品种株型、产量与品质的比较分析. 作物学报, 2007, 33: 1079–1085.
Du Y, Wang Y, Wang X H, Sun N L, Yang J C. Comparisons of plant type, grain yield, and quality of different japonica rice cultivars in Huanghe-Huaihe River area. Acta Agron Sin, 2007, 33: 1079–1085 (in Chinese with English abstract).

[36] 李红娇, 张喜娟, 李伟娟, 徐正进. 超高产粳稻品种抗倒伏性的初步研究. 北方水稻, 2008, 38(2): 2227.
Li H J, Zhang X J, Li W J, Xu Z J. Initial research on lodging resistance in super high-yielding japonica rice cultivars. N Rice, 2008, 38(2): 22–27 (in Chinese with English abstract).

[37] 杨洪伟, 张丽颖, 唐志强, 于丰华, 许童羽. 杂交粳稻茎秆力学性状与理化特征对抗倒伏能力的影响. 农业工程学报, 2024, 40(14): 45–52.
Yang H W, Zhang L Y, Tang Z Q, Yu F H, Xu T Y. Effects of mechanical and physicochemical properties on the lodging resistance of hybrid japonica rice. Trans CSAE, 2024, 40(14): 45–52 (in Chinese with English abstract).

[38] 殷敏, 刘少文, 褚光, 徐春梅, 王丹, 章秀福, 陈松. 长江下游稻区不同类型双季晚粳稻产量与生育特性差异. 中国农业科学, 2020, 53: 890903.
Yin M, Liu S W, Chu G, Xu C M, Wang D Y, Zhang X F, Chen S. Differences in yield and growth traits of different japonica varieties in the double cropping late season in the lower reaches of the Yangtze River. Sci Agric Sin, 2020, 53: 890–903 (in Chinese with English abstract).

[39] 吕腾飞, 周伟, 孙永健, 秦俭, 朱懿, 杨志远, 马均. 不同秧龄下氮肥运筹对杂交稻枝梗和颖花分化及退化的影响. 四川农业大学学报, 2014, 32(1): 110.
Lyu T F, Zhou W, Sun Y J, Qin J, Zhu Y, Yang Z Y, Ma J. Effects of different transplanting seedling ages and nitrogen managements on differentiation and retrogression of branches and spikelets of hybrid rice. J Sichuan Agric Univ, 2014, 32(1): 1–10 (in Chinese with English abstract).

[40] Pan J F, Cui K H, Wei D, Huang J L, Xiang J, Nie L X. Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. Physiol Plant, 2011, 141: 321–331.

[41] 何迷, 李小波, 黄静, 黄光福. 水稻叶面积指数与产量关系研究进展. 农学学报, 2022, 12(8): 1–5.
He M, Li X B, Huang J, Huang G F. The relationship between leaf area index and yield of rice: research progress. J Agric, 2022, 12(8): 1–5 (in Chinese with English abstract).

[1] 孟孜贞, 刘陈, 盛倩男, 熊志豪, 方娅婷, 赵剑, 余秋华, 王昆昆, 李小坤, 任涛, 鲁剑巍. 氮磷钾肥施用对冬油菜增产效果及因冻害减产程度的影响[J]. 作物学报, 2025, 51(4): 1037-1049.
[2] 熊强强, 孙长辉, 顾雯霏, 陆彦尧, 周年兵, 郭保卫, 刘国栋, 魏海燕, 朱金燕, 张洪程. 基于生育期、产量和品质对70份粳糯品种(系)的综合评价[J]. 作物学报, 2025, 51(3): 728-743.
[3] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[4] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[5] 孟璐, 杜明伟, 黎芳, 齐海坤, 路正营, 徐东永, 李存东, 张明才, 田晓莉, 李召虎. 冀中地区高密种植条件下棉花药前群体大小和成熟度与化学脱叶催熟效果的关系[J]. 作物学报, 2023, 49(4): 1028-1038.
[6] 叶晓磊, 耿国涛, 肖国滨, 吕伟生, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜籽产量及品质的影响[J]. 作物学报, 2023, 49(11): 3063-3073.
[7] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[8] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[9] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[10] 丁永刚, 陈立, 董金鑫, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 高产高效型半冬性小麦品种的产量构成、氮素积累转运和籽粒品质特征分析[J]. 作物学报, 2022, 48(12): 3144-3154.
[11] 金容,李钟,杨云,周芳,杜伦静,李小龙,孔凡磊,袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(4): 614-630.
[12] 丁永刚,李福建,王亚华,汤小庆,杜同庆,朱敏,李春燕,朱新开,丁锦峰,郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征[J]. 作物学报, 2020, 46(4): 544-556.
[13] 王一帆,秦亚洲,冯福学,赵财,于爱忠,刘畅,柴强. 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响[J]. 作物学报, 2017, 43(05): 754-762.
[14] 韦还和,孟天瑶,李超,张洪程,戴其根,马荣荣,王晓燕,杨筠文. 水稻甬优12产量13.5 t hm-2以上超高产群体的氮素积累、分配与利用特征[J]. 作物学报, 2016, 42(09): 1363-1373.
[15] 韦还和,孟天瑶,李超,张洪程,戴其根,马荣荣,王晓燕,杨筠文. 超级稻甬优12不同产量水平群体的钾素营养特性[J]. 作物学报, 2016, 42(07): 1047-1057.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!