欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 3063-3073.doi: 10.3724/SP.J.1006.2023.34051

• 耕作栽培·生理生化 • 上一篇    下一篇

镁肥用量对油菜籽产量及品质的影响

叶晓磊1(), 耿国涛1, 肖国滨2, 吕伟生2, 任涛1, 陆志峰1,*(), 鲁剑巍1   

  1. 1华中农业大学资源与环境学院 / 农业农村部长江中下游耕地保育重点实验室, 湖北武汉 430070
    2江西省红壤及种质资源研究所, 江西南昌 331717
  • 收稿日期:2023-03-10 接受日期:2023-05-24 出版日期:2023-11-12 网络出版日期:2023-06-14
  • 通讯作者: 陆志峰, E-mail: zhifenglu@mail.hzau.edu.cn
  • 作者简介:E-mail: yexiaolei@webmail.hzau.edu.cn
  • 基金资助:
    国家自然科学基金项目(32272820);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-12);中央高校基本科研业务费专项基金(2662021ZHQD002);国际镁营养研究所合作项目(IMI2018-02)

Effects of magnesium application rate on yield and quality in oilseed rape (Brassica napus L.)

YE Xiao-Lei1(), GENG Guo-Tao1, XIAO Guo-Bin2, LYU Wei-Sheng2, REN Tao1, LU Zhi-Feng1,*(), LU Jian-Wei1   

  1. 1College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation in Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2Jiangxi Institute of Red Soil and Germplasm Resources, Nanchang 331717, Jiangxi, China
  • Received:2023-03-10 Accepted:2023-05-24 Published:2023-11-12 Published online:2023-06-14
  • Supported by:
    National Natural Science Foundation of China(32272820);China Agriculture Research System of MOF and MARA(CARS-12);Fundamental Research Funds for the Central Universities(2662021ZHQD002);International Magnesium Institute(IMI2018-02)

摘要:

我国冬油菜主产区土壤缺镁严重, 为明确镁肥施用在油菜增产提质上的作用, 于2020/2021和2021/2022油菜种植季在江西进贤和湖南安仁开展田间试验, 共设置0、15、30、45和60 kg MgO hm-2 5个镁肥施用量。研究了镁肥用量对油菜籽产量及其构成因子、籽粒镁含量、含油率和脂肪酸组成的影响。结果表明, 施镁显著增加了油菜籽粒产量(增幅为12.0%~77.1%), 当镁肥用量为21.4~45.6 kg MgO hm-2时菜籽产量达到最高。与不施镁肥相比, 施镁使油菜单株角果数、每角粒数和千粒重分别增加了5.0%~64.7%、1.8%~19.6%和7.1%~8.7%, 但对收获密度影响不显著。施镁后籽粒镁含量增幅为5.0%~30.3%, 含油率增加了0.63~5.11个百分点, 蛋白质含量下降了1.45~2.34个百分点, 籽粒含水率和硫甙含量则无明显变化。镁肥施用显著增加了单位面积籽粒产油量(14.4%~83.4%)和蛋白产量(9.8%~68.1%), 当镁肥用量为30~45 MgO hm-2时产油量达到最高。从脂肪酸组成来看, 施镁对籽粒油酸含量和亚麻酸含量有提升作用, 增幅分别为4.4%~16.0%和3.8%~40.8%, 但降低了亚油酸含量, 降幅为1.2%~10.1%, 对其他脂肪酸组分的影响则较小。综上, 施镁有利于提高油菜产量及其构成因子(单株角果数、每角粒数、千粒重)、籽粒含油量及不饱和脂肪酸含量, 实现产量和品质的协同提升。当镁肥用量为30~45 MgO hm-2时产量与产油量均达到较高水平。

关键词: 镁肥, 油菜, 产量构成, 脂肪酸组成, 镁含量

Abstract:

Magnesium (Mg) deficiency is one of the most serious problems in the main producing area of rapeseed in China. To evaluate the effectiveness of Mg fertilizer on seed yield and quality, field experiments were conducted at Jinxian, Jiangxi province and Anren, Hunan province during the 2020/2021 and 2021/2022 cropping seasons, with five Mg application rates (0, 15, 30, 45, and 60 kg MgO hm-2). Rapeseed yield and its components, seed Mg content, oil content, and fatty acid components were analyzed. The results showed that Mg application increased rapeseed yield by 12.0%-77.1%. Mg application rate for maximal seed yield was 21.4-45.6 kg MgO hm-2. Mg fertilizer increased the number of pods, number of seeds per pod, and 1000-weight by 5.0%-64.7%, 1.8%-19.6%, and 7.1%-8.7%, respectively, which had no significant effect on harvest density. After the application of Mg fertilizer, seed Mg concentration increased by 5.0%-30.3%, and the oil content increased by 0.63%-5.11%, but protein content reduced by 1.45%-2.34%. Seed water and glucosinolate concentration were independent of Mg nutrition. Mg application increased oil yield and protein yield per unit area by 14.4%-83.4% and 9.8%-68.1%, respectively. The amount of Mg fertilizer corresponding to the highest oil production was 30-45 MgO hm-2. As for fatty acid composition, Mg application increased the content of oleic acid and linolenic acid in seeds by 4.4%-16.0% and 3.8%-40.8%, respectively, but decreased the content of linoleic acid by 1.2%-10.1%, which had a non-significant effect on other fatty acid components. In conclusion, Mg application was crucial to the synergistic improvement of yield and quality by improving seed yield and its components (the number of pods per plant, the number of grains per pod, and 1000-grain weight), seed oil content, and the unsaturated fatty acid content. The amount of Mg fertilizer corresponding to the highest yield and oil production was 30-45 MgO hm-2.

Key words: magnesium fertilizer, rapeseed, yield composition, fatty acid composition, magnesium content

表1

供试土壤基础理化性质"

年份
Year
地点
Experimental site
pH 有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
有效镁Available Mg
(mg kg-1)
2020-2021 江西进贤 Jinxian, Jiangxi 5.13 23.1 2.13 14.6 246.6 83.8
湖南安仁 Anren, Hunan 5.41 8.4 0.71 11.6 99.9 23.8
2021-2022 江西进贤 Jinxian, Jiangxi 4.96 22.2 1.29 38.7 195.0 93.2
湖南安仁 Anren, Hunan 5.06 29.5 1.65 11.6 71.0 73.5

图1

镁肥用量对油菜籽产量的影响 同一地点不同小写字母表示不同镁肥水平间差异显著(P < 0.05)。"

表2

镁肥用量对油菜产量构成因子的影响"

年份
Year
试验地点
Experimental site
镁肥用量
Magnesium
application rate
(kg hm-2)
产量构成因子 Yield composition
收获密度
Harvest density
(plants m-2)
单株角果数
Pod number
每角粒数
Seed per pod
千粒重
1000-seed weight
(g)
2020-2021 进贤Jinxian 0 48.0±1.6 a 215±18 b 21.3±1.9 a 4.53±0.12 a
15 44.0±5.7 a 276±7 a 21.0±2.2 a 4.45±0.04 a
30 46.7±3.4 a 260±10 ab 20.7±2.5 a 4.56±0.10 a
45 47.0±5.1 a 296±52 a 21.0±0.8 a 4.46±0.04 a
60 48.3±3.3 a 312±12 a 19.3±3.4 a 4.41±0.02 a
安仁Anren 0 54.1±3.8 a 140±2 a 16.8±1.0 b 3.67±0.03 b
15 54.8±1.9 a 131±11 a 18.7±0.5 ab 3.99±0.09 a
30 48.1±1.6 a 140±25 a 17.1±1.2 b 3.95±0.07 a
45 47.0±6.1 a 151±23 a 17.5±2.3 ab 3.94±0.07 a
60 49.3±3.7 a 122±9 a 20.1±0.1 a 3.93±0.08 a
试验地点 Experimental site (S) * ** ** **
镁肥用量 Magnesium application rate (Mg) ns ns ns ns
试验地点×镁肥用量 S×Mg ns * ns ns
2021-2022 进贤Jinxian 0 39.5±1.0 a 103±6 c 24.3±0.4 a 4.40±0.31 a
15 38.7±2.3 a 120±8 bc 24.3±0.2 a 4.35±0.11 a
30 43.2±3.9 a 121±13 abc 24.3±0.4 a 4.23±0.21 a
45 38.1±4.3 a 140±3 a 24.4±0.2 a 4.37±0.13 a
60 41.1±5.2 a 124±9 ab 25.0±0.2 a 4.21±0.16 a
安仁Anren 0 41.2±2.3 a 119±3 c 17.6±0.2 a 4.64±0.11 a
15 42.1±0.7 a 125±10 c
17.9±0.8 a 4.54±0.08 a
30 43.1±1.9 a 163±3 b 17.9±0.1 a 4.59±0.04 a
45 42.1±4.0 a 168±1 b 18.6±1.1 a 4.38±0.21 a
60 42.6±1.7 a 196±14 a 18.7±1.0 a 4.57±0.03 a
试验地点 Experimental site (S) * ** ** **
镁肥用量 Magnesium application rate (Mg) ns ** ns ns
试验地点×镁肥用量 S×Mg ns ** ns ns

图2

镁肥用量对油菜籽粒镁含量的影响 不同小写字母表示不同镁肥水平间差异显著(P < 0.05)。*和**分别表示在0.05和0.01概率水平差异显著, ns表示无显著差异。"

表3

镁肥用量对油菜籽主要成分含量的影响"

年份
Year
试验地点
Experimental site
镁肥施用量
Magnesium
application rate
(kg hm-2)
含水率
Water content (%)
含油率
Oil content
(%)
蛋白质含量
Protein content (%)
硫甙含量
Glucosinolate content
(μmol g-1)
2020-2021 进贤Jinxian 0 5.31±0.61 a 45.82±1.10 b 23.23±0.86 a 30.06±5.80 a
15 5.22±0.55 a 48.10±0.48 a 21.52±0.80 ab 29.99±10.78 a
30 5.69±0.27 a 48.64±0.52 a 21.81±0.82 ab 30.42±0.66 a
45 5.32±0.55 a 48.01±0.48 a 21.56±0.80 ab 29.89±3.87 a
60 5.48±0.27 a 48.75±0.79 a 21.17±0.65 b 30.33±4.95 a
安仁Anren 0 4.70±0.38 a 40.93±1.05 a 26.11±1.29 ab 24.15±10.46 a
15 5.01±0.12 a 41.75±1.08 a 27.71±0.76 a 25.03±9.26 a
30 4.50±0.10 a 41.80±0.62 a 26.64±0.47 ab 23.80±1.71 a
45 4.65±0.97 a 42.76±1.18 a 24.42±2.03 c 23.37±3.77 a
60 4.58±0.53 a 42.82±0.33 a 24.10±1.42 c 26.49±5.58 a
试验地点 Experimental site (S) ** ** ** ns
镁肥用量 Magnesium application rate (Mg) ns ** * ns
试验地点×镁肥用量 S×Mg ns ns ns ns
2021-2022 进贤Jinxian 0 5.65±0.23 a 48.24±0.16 b 23.54±0.30 a 32.91±9.80 a
15 5.55±0.28 a 48.88±0.21 ab 23.07±0.64 ab 31.00±11.71 a
30 5.36±0.23 a 50.07±0.99 a 22.88±0.80 ab 38.52±5.63 a
45 5.65±0.24 a 49.67±0.67 ab 22.09±0.04 b 27.97±6.47 a
60 5.45±0.55 a 48.87±0.75 ab 22.37±0.25 ab 24.85±10.26 a
安仁Anren 0 4.95±0.19 a 37.98±1.70 b 29.23±0.52 a 24.15±10.46 a
15 4.68±0.41 a 40.62±1.09 ab 29.41±0.54 a 22.39±11.26 a
30 4.68±0.25 a 42.48±1.27 a 27.99±0.67 ab 23.80±1.71 a
45 5.18±0.42 a 43.09±2.17 a 26.89±1.70 b 23.37±3.77 a
60 4.91±0.19 a 41.58±1.01 a 27.34±0.50 ab 26.49±5.58 a
试验地点 Experimental site (S) ** ** ** ns
镁肥用量 Magnesium application rate (Mg) ns ** ** ns
试验地点×镁肥用量 S×Mg ns ns ns ns

表4

镁肥用量对菜籽油脂肪酸组成的影响"

年份
Year
试验地点
Experimental
site
镁肥用量
Magnesium
application rate
(kg hm-2)
不饱和脂肪酸
Unsaturated fatty acids
饱和脂肪酸
Saturated fatty acids
油酸
Oleic acid content (%)
亚油酸
Linoleic acid content (%)
亚麻酸
Linolenic acid content (%)
芥酸
Erucic acid content (%)
硬脂酸
Stearic acid content (%)
棕榈酸
Palmitic acid content (%)
2020-2021 进贤Jinxian 0 44.53±1.06 c 19.66±0.71 a 8.16±0.84 a 2.26±0.98 a 1.54±0.30 a 4.24±0.17 a
15 46.66±1.01 bc 18.36±0.49 ab 8.12±0.98 a 1.82±0.43 a 1.74±0.15 a 4.33±0.04 a
30 49.02±2.30 ab 17.40±1.22 ab 8.74±1.47 a 1.72±0.66 a 1.68±0.24 a 4.21±0.12 a
45 48.46±1.79 ab 17.20±1.29 b 9.46±1.31 a 1.86±0.21 a 1.72±0.14 a 4.49±0.09 a
60 51.67±1.45 a 17.67±0.87 ab 9.57±1.08 a 1.10±0.15 a 1.76±0.35 a 4.51±0.22 a
安仁Anren 0 56.80±0.41 b 21.24±0.73 a 5.66±0.10 b 1.87±0.79 a 2.69±0.31 a 4.67±0.17 a
15 55.19±2.44 b 20.98±0.78 ab 6.77±1.43 ab 2.07±0.85 a 2.68±0.15 a 4.68±0.22 a
30 55.39±1.17 b 20.17±0.11 ab 7.6±0.89 ab 1.82±0.83 a 2.87±0.28 a 4.87±0.19 a
45 60.30±2.86 ab 20.01±0.64 ab 7.63±0.24 ab 1.09±0.12 a 2.93±0.09 a 4.91±0.32 a
60 63.41±3.48 a 19.83±0.13 b 7.97±1.21 a 1.00±0.01 a 2.87±0.15 a 5.14±0.20 a
试验地点
Experimental site (S)
** ** ** ns ** **
镁肥用量
Magnesium application rate (Mg)
** * ns ns ns ns
试验地点×镁肥用量 S×Mg ns ns ns ns ns ns
2021-2022 进贤Jinxian 0 55.01±1.51 b 18.00±0.59 a 9.51±0.05 a 2.05±1.15 ab 0.73±0.21 a 4.11±0.17 a
15 57.44±1.34 ab 16.69±0.45 a 9.70±0.62 a 1.82±0.43 ab 0.64±0.10 a 4.05±0.18 a
30 60.22±0.41 a 17.70±0.79 a 9.81±0.36 a 2.50±0.13 a 0.65±0.37 a 4.21±0.33 a
45 59.84±0.60 a 17.85±0.99 a 9.93±0.51 a 2.08±0.33 ab 0.53±0.31 a 4.27±0.10 a
60 58.53±2.30 ab 17.23±1.39 a 10.05±0.73 a 1.10±0.15 b 0.75±0.20 a 4.01±0.15 a
安仁Anren 0 55.32±3.75 a 17.42±1.42 a 10.64±0.35 b 1.87±0.79 a 1.13±0.22 a 4.66±0.07 a
15 57.80±2.35 a 17.48±0.92 a 11.05±0.26 ab 1.70±0.99 a 0.94±0.11 a 4.68±0.29 a
30 59.68±2.87 a 17.19±1.18 a 11.57±0.51 a 1.82±0.83 a 1.13±0.09 a 4.69±0.50 a
45 58.94±1.00 a 16.90±0.32 a 11.24±0.41 ab 1.09±0.12 a 1.20±0.07 a 4.76±0.34 a
60 57.40±2.27 a 17.26±0.83 a 11.06±0.60 ab 1.00±0.01 a 1.10±0.06 a 4.69±0.31 a
试验地点
Experimental site (S)
ns ns ** ns ns **
镁肥用量
Magnesium application rate (Mg)
* ns ns ns ns ns
试验地点×镁肥用量 S×Mg ns ns ns ns ns ns

表5

镁肥用量对油菜籽产油量和蛋白产量的影响"

年份
Year
试验地点
Experimental site
镁肥用量
Magnesium application rate (kg hm-2)
理论产油量
Rapeseed oil production
(kg hm-2)
理论蛋白产量
Protein production
(kg hm-2)
2020-2021 进贤Jinxian 0 421.5±11.5 c 214.2±16.1 c
15 548.8±57.0 b 246.6±36.5 bc
30 630.9±42.9 b 283.9±32.4 ab
45 726.7±38.0 a 326.8±25.7 a
60 730.1±30.4 a 317.1±14.1 a
安仁Anren 0 703.0±9.7 d 449.0±28.3 b
15 804.3±10.4 c 533.9±14.7 a
30 818.6±26.5 bc 521.6±13.5 a
45 861.3±17.4 ab 493.0±53.4 ab
60 888.5±36.7 a 498.8±7.6 ab
试验地点 Experimental site (S) ** **
镁肥用量 Magnesium application rate (Mg) ** **
试验地点×镁肥用量 S×Mg * ns
2021-2022 进贤Jinxian 0 475.2±43.8 c 232.2±25.1 c
15 621.9±43.5 b 294.0±27.8 b
30 790.7±26.7 a 362.3±31.0 a
45 871.4±54.9 a 387.3±19.5 a
60 853.1±40.7 a 390.3±12.6 a
安仁Anren 0 498.5±7.5 d 384.5±21.8 c
15 628.2±77.1 c 454.6±52.7 bc
30 791.1±19.1 b 521.3±13.8 ab
45 909.8±23.2 a 569.8±55.2 a
60 886.5±17.5 a 583.5±28.2 a
试验地点 Experimental site (S) ** ns
镁肥用量 Magnesium application rate (Mg) ** *
试验地点×镁肥用量 S×Mg * ns

图3

各指标相关性分析 *、**、***分别表示在0.05、0.01、0.001概率水平显著相关。"

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617 (in Chinese with English abstract).
[2] 沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011, 13(1): 1-8.
Shen J X, Fu T D. Rapeseed production, improvement and edible oil supply in China. J Agric Sci Technol, 2011, 13(1): 1-8 (in Chinese with English abstract).
[3] 徐华丽. 长江流域油菜施肥状况调查及配方施肥效果研究. 华中农业大学硕士学位论文,湖北武汉, 2012.
Xu H L. Investigation on the Fertilization and Effect of Formulated Fertilization of Winter Rapeseed in Yangtze River Basin. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2012 (in Chinese with English abstract).
[4] 李慧. 中国冬油菜氮磷钾肥施用效果与推荐用量研究. 华中农业大学博士学位论文,湖北武汉, 2015.
Li H. Fertilization Effect and Fertilizer Recommendation of Nitrogen, Phosphorus and Potassium on the Winter Oilseed Rape of China. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[5] 鲁剑巍, 任涛, 丛日环, 李小坤, 张洋洋. 我国油菜施肥状况及施肥技术研究展望. 中国油料作物学报, 2018, 40: 712-720.
Lu J W, Ren T, Cong R H, Li X K, Zhang Y Y. Prospects of research on fertilization status and technology of rapeseed in China. Chin J Oil Crop Sci, 2018, 40: 712-720 (in Chinese with English abstract).
[6] 王寅, 鲁剑巍, 李小坤, 任涛, 丛日环, 占丽平. 长江流域直播冬油菜氮磷钾硼肥施用效果. 作物学报, 2013, 39: 1491-1500.
doi: 10.3724/SP.J.1006.2013.01491
Wang Y, Lu J W, Li X K, Ren T, Cong R H, Zhan L P. Effects of nitrogen, phosphorus, potassium, and boron fertilizers on winter oilseed rape (Brassica napus L.)direct-sown in the Yangtze River Basin. Acta Agron Sin, 2013, 39: 1491-1500 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.01491
[7] 杨文祥, 王强盛, 王绍华, 李刚华, 丁艳锋. 镁肥对水稻镁吸收与分配及稻米食味品质的影响. 西北植物学报, 2006, 26: 2473-2478.
Yang W X, Wang Q S, Wang S H, Li G H, Ding Y F. Effects of Mg fertilization on Mg uptake and partition by rice and rice cooking quality. Acta Bot Boreali-Occident Sin, 2006, 26: 2473-2478 (in Chinese with English abstract).
[8] 邹娟, 鲁剑巍, 吴江生, 李银水. 4个双低甘蓝型油菜品种钙、镁、硫吸收动态. 华中农业大学学报, 2009, 28: 295-299.
Zou J, Lu J W, Wu J S, Li Y S. Dynamics of calcium, magnesium and sulfur uptake in 4 double-low rapeseed (Brassica napus L.)varieties. J Huazhong Agric Univ, 2009, 28: 295-299 (in Chinese with English abstract).
[9] 白由路, 金继运, 杨俐苹. 我国土壤有效镁含量及分布状况与含镁肥料的应用前景研究. 土壤肥料, 2004, (2): 3-5.
Bai Y L, Jin J Y, Yang L P. Study on the content and distribution of soil available magnesium and foreground of magnesium fertilizer in China. Soils Fert, 2004, (2): 3-5 (in Chinese with English abstract).
[10] 陆志峰, 任涛, 鲁剑巍. 我国冬油菜种植区土壤有效镁状况与油菜施镁效果. 华中农业大学学报, 2021, 40(2): 17-23.
Lu Z F, Ren T, Lu J W. Soil available magnesium status and effects of magnesium application on rapeseed yield in main producing area of China. J Huazhong Agric Univ, 2021, 40(2): 17-23 (in Chinese with English abstract).
[11] Chen X, Wang Z, Muneer M A, Ma C, He D, White P J, Li C, Zhang F. Short planks in the crop nutrient barrel theory of China are changing: evidence from 15 crops in 13 provinces. Food Energy Secur, 2022, 12: e389.
doi: 10.1002/fes3.389
[12] 李丹萍, 刘敦一, 张白鸽, 杨敏, 李文丽, 石孝均, 陈新平, 张跃强. 不同镁肥在中国南方三种缺镁土壤中的迁移和淋洗特征. 土壤学报, 2018, 55: 1513-1524.
Li D P, Liu D Y, Zhang B G, Yang M, Li W L, Shi X J, Chen X P, Zhang Y Q. Movement and leaching of magnesium fertilizers in three types of magnesium-deficient soils in South China relative to fertilizer type. Acta Pedol Sin, 2018, 55: 1513-1524 (in Chinese with English abstract).
[13] 任涛, 郭丽璇, 张丽梅, 杨旭坤, 廖世鹏, 张洋洋, 李小坤, 丛日环, 鲁剑巍. 我国冬油菜典型种植区域土壤养分现状分析. 中国农业科学, 2020, 53: 1606-1616.
doi: 10.3864/j.issn.0578-1752.2020.08.010
Ren T, Guo L X, Zhang L M, Yang X K, Liao S P, Zhang Y Y, Li X K, Cong R H, Lu J W. Soil nutrient status of oilseed rape cultivated soil in typical winter oilseed rape production regions in China. Sci Agric Sin, 2020, 53: 1606-1616 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.08.010
[14] Chen Z C, Peng W T, Li J, Liao H. Functional dissection and transport mechanism of magnesium in plants. Semin Cell Dev Biol, 2018, 74: 142-152.
doi: S1084-9521(17)30257-4 pmid: 28822768
[15] Cakmak I, Kirkby E A. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant, 2008, 133: 692-704.
pmid: 18724409
[16] Senbayram M, Gransee A, Wahle V, Thiel H. Role of magnesium fertilizers in agriculture: plant-soil continuum. Crop Past Sci, 2015, 66: 1219-1229.
doi: 10.1071/CP15104
[17] Wang Z, Hassan M U, Nadeem F, Wu L, Zhang F, Li X. Magnesium fertilization improves crop yield in most production systems: a meta-analysis. Front Plant Sci, 2020, 10: 1727.
doi: 10.3389/fpls.2019.01727
[18] 林齐民, 吕滨, 陈永柳. 水稻镁肥肥效及土壤镁肥力的丰缺指标. 福建农学院学报, 1990, (4): 450-456.
Lin Q M, Lyu B, Chen Y L. Effect of magnesium fertilizer on rice and the index of magnesium fraction in paddy soil. J Fujian Agric Coll, 1990, (4): 450-456 (in Chinese).
[19] 丁玉川, 焦晓燕, 聂督, 程滨, 赵瑞芬, 刘平. 山西省主要类型土壤镁素供应状况及镁肥施用效果. 水土保持学报, 2011, 25(6): 139-143.
Ding Y C, Jiao X Y, Nie D, Cheng B, Zhao R F, Liu P. Magnesium supply status of main soil types and effects of magnesium fertilizer oil yield and quality of crops in Shanxi province. J Soil Water Conserv, 2011, 25(6): 139-143 (in Chinese with English abstract).
[20] Koch M, Busse M, Naumann M, Jákli B, Smit I, Cakmak I, Hermans C, Pawelzik E. Differential effects of varied potassium and magnesium nutrition on production and partitioning of photoassimilates in potato plants. Physiol Plant, 2019, 166: 921-935.
doi: 10.1111/ppl.12846 pmid: 30288757
[21] Poglodzinski R, Barlog P, Grzbisz W. Effect of nitrogen and magnesium sulfate application on sugar beet yield and quality. Plant Soil Environ, 2021, 67: 507-513.
doi: 10.17221/336/2021-PSE
[22] Führs H. The significance of magnesium for crop quality. Plant Soil, 2013, 368: 101-128.
doi: 10.1007/s11104-012-1555-2
[23] 熊秋芳, 张效明, 文静, 李兴华, 傅廷栋, 沈金雄. 菜籽油与不同食用植物油营养品质的比较: 兼论油菜品质的遗传改良. 中国粮油学报, 2014, 29(6): 122-128.
Xiong Q F, Zhang X M, Wen J, Li X H, Fu T D, Shen J X. Comparison of nutritional values between rapeseed oil and several other edible vegetable oils: discussion of rapeseed quality genetic improvement. J Chin Cereals Oils Assoc, 2014, 29(6): 122-128 (in Chinese with English abstract).
[24] 田贵生, 陆志峰, 任涛, 鲁剑巍. 镁肥基施及后期喷施对油菜产量与品质的影响. 中国土壤与肥料, 2019, (5): 85-90.
Tian G S, Lu Z F, Ren T, Lu J W. Effects of spraying magnesium on the yield and quality of oilseed rape under different magnesium fertilizer application rates. Soil Fert Sci China, 2019, (5): 85-90 (in Chinese with English abstract).
[25] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998.
National Soil Survey Office. Chinese Soil. Beijing: China Agriculture Press, 1998 (in Chinese).
[26] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
Bao S D. Soil Agrochemical Analysis. Beijing: China Agriculture Press, 2000 (in Chinese).
[27] 李培武, 谢立华, 李光明, 张文, 杨湄, 陈洪. 双低油菜质量标准及其检测技术. 中国食物与营养, 2003, (6): 22-25.
Li P W, Xie L H, Li G M, Zhang W, Yang M, Chen H. Double low oilseed rape quality standard and its testing technology. Food Nutr China, 2003, (6): 22-25 (in Chinese).
[28] Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35-49.
doi: 10.1016/S0378-4290(00)00082-4
[29] Zhang H, Flottmann S. Source-sink manipulations indicate seed yield in canola is limited by source availability. Eur J Agric, 2018, 96: 70-76.
doi: 10.1016/j.eja.2018.03.005
[30] Farhat N, Elkhouni A, Zorrig W, Smaoui A, Abdelly C, Rabhi M. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol Plant, 2016, 38: 145.
doi: 10.1007/s11738-016-2165-z
[31] Xu X F, Wang B, Lou Y, Han W J, Lu J Y, Li D D, Li L G, Zhu J, Yang Z N. Magnesium transporter 5 plays an important role in Mg transport for male gametophyte development in Arabidopsis. . Plant J, 2015, 84: 925-936.
doi: 10.1111/tpj.13054
[32] Sun K, Hunt K, Hauser B A. Ovule abortion in Arabidopsis triggered by stress. Plant Physiol, 2004, 135: 2358-2367.
doi: 10.1104/pp.104.043091
[33] 刘晓伟, 鲁剑巍, 李小坤, 卜容燕, 刘波. 直播冬油菜钙、镁、硫养分吸收规律. 中国油料作物学报, 2012, 34: 638-644.
Liu X W, Lu J W, Li X K, Bu R Y, Liu B. Absorption characteristics of calcium, magnesium and sulfur by winter rapeseed (Brassica napus) under direct-seeding cropping system. Chin J Oil Crop Sci, 2012, 34: 638-644 (in Chinese with English abstract).
[34] Ruuska S A. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol, 2004, 136: 3409-3409.
doi: 10.1104/pp.104.900126
[35] Tränkner M, Tavakol E, Jákli B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol Plant, 2018, 163: 414-431.
doi: 10.1111/ppl.2018.163.issue-3
[36] Schwender J R, John B O. Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos. Plant Physiol, 2002, 130: 347-361.
doi: 10.1104/pp.004275 pmid: 12226514
[37] Koley S, Chu K L, Mukherjee T, Morley S A, Klebanovych A, Czymmek K J, Allen D K. Metabolic synergy in Camelina reproductive tissues for seed development. Sci Adv, 2022, 8: eabo7683.
doi: 10.1126/sciadv.abo7683
[38] 叶晓磊, 周雄, 邵文胜, 耿国涛, 鲁剑巍. 两种镁肥在直播冬油菜上施用效果比较. 中国农技推广, 2019, 35(增刊1): 123-125.
Ye X L, Zhou X, Shao W S, Geng G T, Lu J W. Comparison of the application effects of two magnesium fertilizers on direct seeding winter oilseed rape. China Agric Technol Extens, 2019, 35(S1): 123-125 (in Chinese).
[1] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
[2] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
[3] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
[4] 闫金垚, 宋毅, 陆志峰, 任涛, 鲁剑巍. 磷肥用量对油菜籽产量及品质的影响[J]. 作物学报, 2023, 49(6): 1668-1677.
[5] 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550.
[6] 余新颖, 王春云, 李大双, 王宗铠, 蒯婕, 汪波, 王晶, 徐正华, 周广生. 高产油菜品种稳产性形成机制[J]. 作物学报, 2023, 49(6): 1601-1615.
[7] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[8] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[9] 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221.
[10] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[11] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[12] 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925.
[13] 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905.
[14] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[15] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .