欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 3074-3089.doi: 10.3724/SP.J.1006.2023.33009

• 耕作栽培·生理生化 • 上一篇    下一篇

浅埋滴灌下水氮运筹对春玉米根系衰减特性及产量的影响

张玉芹1,2(), 杨恒山1,2,*(), 张瑞富1, 李从锋3, 提俊阳1, 葛选良1, 杨镜宏1   

  1. 1内蒙古民族大学农学院, 内蒙古通辽028042
    2内蒙古自治区饲用作物工程技术研究中心, 内蒙古通辽028042
    3中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2023-02-16 接受日期:2023-05-24 出版日期:2023-11-12 网络出版日期:2023-06-14
  • 通讯作者: 杨恒山, E-mail: yanghengshan2003@aliyun.com
  • 作者简介:E-mail: zhyq369@126.com
  • 基金资助:
    国家自然科学基金项目(31960382);国家自然科学基金项目(32160509)

Effects of water and nitrogen application on root attenuation characteristics and yield of spring maize under shallow buried drip irrigation

ZHANG Yu-Qin1,2(), YANG Heng-Shan1,2,*(), ZHANG Rui-Fu1, LI Cong-Feng3, TI Jun-Yang1, GE Xuan-Liang1, YANG Jing-Hong1   

  1. 1College of Agronomy, Inner Mongolia Minzu University, Tongliao 028042, Inner Mongolia, China
    2Engineering Research Center of Forage Crops of Inner Mongolia Autonomous Region, Tongliao 028042, Inner Mongolia, China
    3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2023-02-16 Accepted:2023-05-24 Published:2023-11-12 Published online:2023-06-14
  • Supported by:
    National Natural Science Foundation of China(31960382);National Natural Science Foundation of China(32160509)

摘要:

为探明浅埋滴灌下水氮运筹对春玉米产量及吐丝后根系衰减特性的影响, 2017—2020年在通辽市科尔沁区农牧业高新科技示范园区, 以传统畦灌常规施氮(W: 4000 m3 hm-2, N: 300 kg hm-2)为对照(CK), 以滴灌定额为主处理, 设传统畦灌常规灌量40% (W1: 1600 m3 hm-2)、50% (W2: 2000 m3 hm-2)、60% (W3: 2400 m3 hm-2) 3个水平, 以施氮量为副处理, 设常规施氮量50% (N1: 150 kg hm-2)、70% (N2: 210 kg hm-2)和常规施氮量(N3: 300 kg hm-2) 3个水平, 测定不同水氮运筹下春玉米产量的变化, 2019年和2020年采用BTC-100微根监测系统对春玉米吐丝后0~50 d时段内0~100 cm土层的根系进行定点连续动态监测。结果表明, 春玉米产量连续4年均为W3N3显著高于CK, 与W3N2、W2N3、W2N2处理差异不显著, 氮肥农学效率连续4年均为W3N2较高。与CK相比, 浅埋滴灌W3N3 0~60 cm土层根长密度、总根表面积和根系平均直径增加, 80~100 cm土层根长密度降低, 总根表面积和根系平均直径差异较小; 吐丝后0~50 d根长密度、总根表面积和根系平均直径衰减幅度较CK低, 其中20~40 cm土层根长密度吐丝后0~50 d时段W3N3 2年分别降低10.29%和8.83%, CK分别降低了15.04%和14.08%, 平均根系衰减率W3N3较CK降低5.23%和4.43%。浅埋滴灌下, 根长密度、总根表面积和根系平均直径W3N3、W3N2高于其他处理, 且吐丝后0~50 d时段内0~60 cm土层衰减幅度较低, 80~100 cm土层差异较小; 吐丝后0~50 d时段内0~100 cm土层平均根系衰减率W3N3与W3N2差异不显著, W3N2较W2N2和W1N2 2年分别低5.68%、5.44%和9.75%、11.98%, 较W3N1低7.16%和6.77%。方差分析表明, 滴灌量和施氮量对产量和氮肥农学效率均有显著影响, 滴灌量对吐丝后0~50 d时段内0~60 cm土层根长密度、总根表面积和平均根系衰减率影响显著, 施氮量对吐丝后0~50 d时段内0~60 cm土层根长密度、吐丝后0~30 d时段内0~60 cm总根表面积和吐丝后0~50 d时段内0~40 cm土层平均根系衰减率影响显著。综上, 浅埋滴灌下W3N3和W3N2 0~60 cm土层根长密度、总根表面积和根系平均直径较高, 且吐丝后0~50 d时段内降低幅度小, 平均根系衰减率低, 二者产量差异不显著, 但W3N2氮肥农学效率更高, 推荐W3N2为西辽河平原灌区玉米节水高产高效栽培适宜的水氮管理模式。

关键词: 玉米, 浅埋滴灌, 水氮运筹, 根系衰减, 产量

Abstract:

In order to explore the effects of shallow drip irrigation on the yield and root decay characteristics of spring corn after silking, in the Agricultural and Animal Husbandry High Tech Demonstration Park of Horqin District, Tongliao City from 2017 to 2020, traditional border irrigation conventional nitrogen application (W: 4000 m3 hm-2, N: 300 kg hm-2) was used as the control (CK), and drip irrigation quotas were used as the main treatments. Three levels of traditional border irrigation conventional irrigation were set: 40% (W1: 1600 m3 hm-2), 50% (W2: 2000 m3 hm-2), and 60% (W3: 2400 m3 hm-2), Using nitrogen application rate as the secondary treatment, three levels of conventional nitrogen application rate [50% (N1: 150 kg hm-2), 70% (N2: 210 kg hm-2), and conventional nitrogen application rate (N3: 300 kg hm-2)] were set up to determine the changes in spring maize yield under different water and nitrogen treatments. In 2019 and 2020, the BTC-100 micro root monitoring system was used to continuously monitor root system of spring maize in the 0-100 cm soil layer at the 0-50 days stage after silking. The results showed that the yield of spring maize was significantly higher in W3N3 than CK for four consecutive years, and there was not significant difference compared with W3N2, W2N3, and W2N2 treatments. The nitrogen agronomic efficiency of W3N2 was also the highest at the same time. Compared with CK, root length density, the total root surface area, and the average root diameter of W3N3 all increased in 0-60 cm soil layer while root length density, the total root surface area, and the average root diameter were less in 80-100 cm soil layer; the decrease in root length density, the total root surface area, and the average root diameter was lower from 0 d to 50 d after silking in two years, in which the root length density of W3N3 and CK decreased by 10.29% and 8.83%, and 15.04% and 14.08% and the average root decay rate of W3N3 decreased by 5.23% and 4.43% compared with CK. Under the shallow buried drip irrigation, the root length density, the average diameter, and the total root surface area of W3N3 and W3N2 were both higher than those of other treatments, whose decrease extent of average root decay rate were lower in 0-60 cm soil layer and differences were less in 80-100 cm soil layer from 0 day to 50 days after silking; During the 0-50 day stage after silking, the difference of average root decay rate between W3N3 and W3N2 was not significant, and W3N2 decreased by 5.68% and 5.44%, 9.75% and 11.98%, 7.16% and 6.77%, respectively, compared with W3N1, W2N2, and W1N2 in two years. The variance analysis showed that both drip irrigation and nitrogen application had a significant impact on yield and nitrogen fertilizer agronomic efficiency. The drip irrigation amount had a significant impact on the root length density, the total root surface area, and the average root decay rate of the 0-60 cm soil layer at the 0-50 day stage after silking. Nitrogen application amount had a significant impact on root length density of the 0-60 cm soil layers at the 0-50 day stage after silking, the total root surface area of the 0-60 cm soil layers at the 0-30 day stage after silking, and the average root decay rate of the 0-40 cm soil layer at the 0-50 day stage after silking. In summary, the root length density, the total root surface area, and the average root diameter of the 0-60 cm soil layers of W3N3 and W3N2 under shallow burying drip irrigation were relatively higher, and the decrease was lower within the 0-50 day stage after silking, the average root decay rate was low, and the yield difference between the two was not significant, however, W3N2 had higher nitrogen agronomic efficiency, which could be recommended as a suitable water and nitrogen application mode for water-saving, high-yield, and efficient cultivation of corn for the irrigation area of the Xiliaohe plain.

Key words: maize, shallow buried drip irrigation, water and nitrogen application, root attenuation, yield

表1

不同生育阶段灌水和施氮情况"

生育期
Stage
灌溉次数
Number of irrigation
灌溉量Irrigation amount (m3 hm-2) 施氮量Nitrogen application rate (kg hm-2)
W1 W2 W3 CK N1 N2 N3 CK
播种Sowing seeds 1 550 550 550 550 35.10 35.10 35.10 35.1
拔节期Jointing stage 2 245 335 425 575 34.47 52.47 79.47
小喇叭口期Small bell stage 3 245 335 425 1150 264.9
大喇叭口期Big bell stage 4 200 270 350 575 68.94 104.94 158.94
吐丝期Silking stage 5 150 215 275 1150 11.49 17.49 26.49
灌浆期Filling stage 6 150 215 275
7 60 80 100
合计Total 1600 2000 2400 4000 150 210 300 300

图1

微根管空间布置图"

图2

微根管法监测吐丝期至吐丝后50 d玉米根系生长示意图"

图3

不同水肥运筹下春玉米根长密度的时空变化 W1N3: 传统灌量40% (1600 m3 hm-2), 常规施氮量(300 kg hm-2); W1N2: 传统灌量40% (1600 m3 hm-2), 常规施氮量70% (210 kg hm-2); W1N1: 传统灌量40% (1600 m3 hm-2), 常规施氮量50% (150 kg hm-2); W2N3: 传统灌量50% (2000 m3 hm-2), 常规施氮量(300 kg hm-2); W2N2: 传统灌量50% (2000 m3 hm-2), 常规施氮量70% (210 kg hm-2); W2N1: 传统灌量50% (2000 m3 hm-2), 常规施氮量50% (150 kg hm-2); W3N3: 传统灌量60% (2400 m3 hm-2), 常规施氮量(300 kg hm-2); W3N2: 传统灌量60% (2400 m3 hm-2), 常规施氮量70% (210 kg hm-2); W3N1: 传统灌量60% (2400 m3 hm-2), 常规施氮量50% (150 kg hm-2); CK: 传统灌量 (4000 m3 hm-2), 常规施氮量(300 kg hm-2)。"

表2

浅埋滴灌水氮运筹下根长密度方差分析"

土层
Soil layer (cm)
差异源
Source of difference
吐丝后天数 Days after silking
0 d 10 d 20 d 30 d 40 d 50 d
0-20 灌量Irrigation amount (A) 467.972** 405.180** 291.589** 320.021** 339.451** 360.644**
施氮量Nitrogen application (B) 56.785** 50.791** 39.140** 43.616** 50.555** 54.992**
年份Year (C) 7.274* 5.312* 3.610 3.344 2.903 3.281
灌量×施氮量A×B 0.916 0.841 0.630 0.636 0.588 0.513
灌量×施氮量×年份A×B×C 0.077 0.027 0.021 0.126 0.025 0.037
20-40 灌量Irrigation amount (A) 252.027** 228.095** 256.931** 210.217** 240.367** 270.290**
施氮量Nitrogen application (B) 11.012** 11.663** 14.394** 13.045** 16.169** 19.200**
年份Year (C) 1.075 0.877 1.110 1.336 1.386 1.209
灌量×施氮量A×B 0.677 0.701 1.079 0.892 1.071 1.389
灌量×施氮量×年份A×B×C 0.073 0.067 0.039 0.010 0.007 0.043
40-60 灌量Irrigation amount (A) 729.284** 734.078** 742.113** 601.307** 562.018** 686.459**
施氮量Nitrogen application (B) 69.194** 79.163** 80.761** 75.835** 76.808** 100.871**
年份Year (C) 8.746** 7.335* 7.401** 5.904* 5.505* 6.007*
灌量×施氮量A×B 4.963 5.256 5.890** 6.216** 7.158** 9.807**
灌量×施氮量×年份A×B×C 0.084 0.028 0.017 0.007 0.001 0.003
60-80 灌量Irrigation amount (A) 2.121 2.301 3.539* 3.668* 3.711* 6.363**
施氮量Nitrogen application (B) 0.519 0.884 1.298 2.017 2.575 1.784
年份Year (C) 1.049 0.884 1.303 0.978 0.619 1.748
灌量×施氮量A×B 0.790 0.563 0.693 0.625 0.800 1.554
灌量×施氮量×年份A×B×C 0 0.005 0.017 0.002 0.017 0.163
80-100 灌量Irrigation amount (A) 0.293 1.106 3.366* 5.124* 0.615 3.146
施氮量Nitrogen application (B) 0.891 0.764 1.471 2.351 0.277 1.363
年份Year (C) 2.907 1.802 1.919 0.881 0.176 1.191
灌量×施氮量A×B 2.675* 2.363 3.562* 3.961** 0.386 1.702
灌量×施氮量×年份A×B×C 0.104 0.027 0.011 0.009 0.001 0.011

图4

水氮运筹对春玉米总根表面积的影响 处理同图3。"

表3

浅埋滴灌水氮运筹下总根表面积方差分析"

深度
Soil layer (cm)
差异源
Source of difference
吐丝后天数 Days after silking
0 d 10 d 20 d 30 d 40 d 50 d
0-20 灌量Irrigation amount (A) 1426.422** 3496.397** 2945.179** 1089.132** 109.027** 76.852**
施氮量Nitrogen application (B) 116.350** 273.314** 98.636** 26.146** 3.102 1.515
年份Year (C) 38.986** 167.959** 137.439** 32.360** 2.692 3.526
灌量×施氮量A×B 5.659** 7.782** 25.258** 7.706** 1.133 0.467
灌量×施氮量×年份A×B×C 1.749 1.051 2.085 2.318 0.219 0.102
20-40 灌量Irrigation amount (A) 1972.932** 12,467.822** 3234.093** 7635.317** 47.932** 56.129**
施氮量Nitrogen application (B) 120.788** 907.160** 75.518** 386.436** 3.142 3.099
年份Year (C) 78.785** 392.604** 82.632** 1.393 0.157 0.759
灌量×施氮量A×B 7.740** 32.139** 15.076** 66.259** 0.408 0.300
灌量×施氮量×年份A×B×C 2.693* 12.871** 5.714** 7.975** 0.019 0.004
40-60 灌量Irrigation amount (A) 1482.564** 11,612.839** 5572.517** 5804.497** 29.108** 31.819**
施氮量Nitrogen application (B) 116.235** 498.086** 316.128** 579.984** 2.852 3.195
年份Year (C) 86.850** 699.943** 309.187** 372.158** 1.821 2.241
灌量×施氮量A×B 15.678** 114.741** 105.435** 85.864** 0.425 0.390
灌量×施氮量×年份A×B×C 0.002 0.746 0.016 0.013 0 0
60-80 灌量Irrigation amount (A) 59.806** 68.629** 34.183** 25.577** 16.703** 13.470**
施氮量Nitrogen application (B) 2.493 1.849 2.840 3.078 1.644 1.337
年份Year (C) 19.626** 19.517** 9.422** 6.854* 4.286* 3.227
灌量×施氮量A×B 0.755 2.721* 0.972 0.959 1.239 1.386
灌量×施氮量×年份A×B×C 0 0.106 0 0 0 0
80-100 灌量Irrigation amount (A) 37.468** 117.640** 24.667** 22.671** 21.148** 19.326**
施氮量Nitrogen application (B) 2.166 3.081 3.818* 2.587 1.774 3.197
年份Year (C) 21.698** 32.852** 10.246* 8.447** 8.442** 6.456*
灌量×施氮量A×B 1.556 4.534** 0.922 0 0.848 1.268
灌量×施氮量×年份A×B×C 0 0.473 0 0 0 0

图5

水氮运筹对春玉米根系平均直径的影响 处理同图3。"

表4

浅埋滴灌水氮运筹下根系平均直径方差分析"

土层
Soil layer (cm)
差异源
Source of difference
吐丝后天数 Days after silking
0 d 10 d 20 d 30 d 40 d 50 d
0-20 灌量Irrigation amount (A) 221.477** 104.306** 168.826** 67.514** 115.333** 16.726**
施氮量Nitrogen application (B) 12.078** 4.969** 3.715 1.704 3.096 0.418
年份Year (C) 0.275 1.617 0.578 0.938 1.235 0.029
灌量×施氮量A×B 0.657 0.379 0.329 0.367 0.46 0.088
灌量×施氮量×年份A×B×C 0.976 0.281 0.661 0.331 0.205 0.068
20-40 灌量Irrigation amount (A) 76.94** 241.468** 264.564** 264.446** 207.159** 359.881**
施氮量Nitrogen application (B) 4.086* 14.935** 10.707** 14.892** 9.094** 18.946**
年份Year (C) 0.651 10.127** 83.468** 91.443** 50.204** 22.335**
灌量×施氮量A×B 0.473 1.795 0.895 2.889 1.474 2.456
灌量×施氮量×年份A×B×C 0.045 0.228 0.601 0.157 0.237 0.896
40-60 灌量Irrigation amount (A) 67.514** 22.453** 264.463** 317.821** 558.274** 462.248**
施氮量Nitrogen application (B) 1.704 1.138 11.421** 14.964** 21.970** 17.927**
年份Year (C) 0.938 0.745 6.594* 0.940 8.119** 11.159**
灌量×施氮量A×B 0.367 0.439 5.674** 4.881** 11.302** 10.946**
灌量×施氮量×年份A×B×C 0.331 0.057 0.526 1.153 1.886 1.587
60-80 灌量Irrigation amount (A) 11.025** 25.449** 9.037** 7.877** 6.008** 8.199**
施氮量Nitrogen application (B) 1.908 1.355 2.369 2.475 2.281 2.462
年份Year (C) 0.616 5.004* 0.039 1.308 0.731 0.188
灌量×施氮量A×B 2.133 3.068* 0.595 0.944 0.200 0.493
灌量×施氮量×年份A×B×C 0.534 1.074 0.682 1.421 0.135 0.425
80-100 灌量Irrigation amount (A) 6.454** 36.900** 13.062** 15.291** 10.703** 11.594**
施氮量Nitrogen application (B) 1.026 4.290* 1.229 2.987 1.653 2.647
年份Year (C) 0.732 0.604 0 0.123 0.050 0.841
灌量×施氮量A×B 0.341 0.561 0.193 0.324 0.322 0.235
灌量×施氮量×年份A×B×C 0.168 0.358 0.355 0.222 0.194 0.134

图6

水氮运筹下春玉米根系衰减速率的动态变化 处理同图3。"

图7

水氮运筹下春玉米平均根系衰减率变化 处理同图3。"

表5

浅埋滴灌水氮运筹下平均根系衰减率方差分析"

土层
Soil layer (cm)
差异源
Source of difference
吐丝后天数 Days after silking
0-10 d 10-20 d 20-30 d 30-40 d 40-50 d
0-20 灌量Irrigation amount (A) 17.074** 14.140** 34.225** 15.816** 17.767**
施氮量Nitrogen application (B) 3.460* 3.792* 4.803* 8.572** 3.336*
年份Year (C) 0.003 0.019 0.098 0.048 0.313
灌量×施氮量A×B 0.494 0.212 1.654 1.373 0.218
灌量×施氮量×年份A×B×C 0.305 0.037 2.311 1.460 0.094
20-40 灌量Irrigation amount (A) 33.334** 41.379** 39.093** 44.169** 31.560**
施氮量Nitrogen application (B) 6.355** 5.656** 8.782** 6.856** 5.836**
年份Year (C) 0.051 1.012 2.098 0.001 0.185
灌量×施氮量A×B 0.501 1.598 2.465 0.585 0.727
灌量×施氮量×年份A×B×C 0.450 1.371 2.087 0.360 0.689
40-60 灌量Irrigation amount (A) 15.753** 5.490** 4.798* 6.483** 9.718**
施氮量Nitrogen application (B) 4.747* 0.704 2.562 2.406 3.362*
年份Year (C) 0.013 0.087 0.040 0.071 0.005
灌量×施氮量A×B 0.745 0.293 0.332 0.561 0.307
灌量×施氮量×年份A×B×C 0.475 0.100 0.027 0.032 0.036
60-80 灌量Irrigation amount (A) 5.857** 5.346** 1.714 1.279 3.367*
施氮量Nitrogen application (B) 3.790* 1.450 2.434 0.650 0.610
年份Year (C) 0 0.958 0.008 0.047 1.177
灌量×施氮量A×B 0.507 0.775 0.632 0.429 1.056
灌量×施氮量×年份A×B×C 0 0.498 0.081 0.096 0.589
80-100 灌量Irrigation amount (A) 2.999 1.806 0.630 0.050 0.027
施氮量Nitrogen application (B) 0.565 0.613 0.417 0.006 0.060
年份Year (C) 0 0.034 0.294 0.095 1.106
灌量×施氮量A×B 0.325 0.216 0.169 0.017 0.013
灌量×施氮量×年份A×B×C 0.043 0.033 0.027 0.004 0.010

图8

不同水氮运筹对春玉米产量的影响 处理同图3。同一年份处理间不同小写字母表示差异显著P < 0.05。"

图9

不同水氮运筹对春玉米氮肥农学效率的影响 处理同图3。同一年份处理间不同小写字母表示差异显著P < 0.05。"

表6

浅埋滴灌水氮运筹下产量及氮肥农学效率方差分析"

差异源
Source of difference
籽粒产量
Grain yield
氮肥农学效率
Nitrogen agronomic efficiency
灌量Irrigation amount (A) 1158.184** 171.440**
施氮量Nitrogen application (B) 880.362** 285.551**
年份Year (C) 1187.540** 376.737**
灌量×施氮量A×B 21.014 1.587
灌量×施氮量×年份A×B×C 5.595 3.790
[1] 王崇桃, 李少昆, 韩伯棠. 玉米高产之路与产量潜力挖掘. 科技导报, 2006, 24(4): 8-11.
Wang C T, Li S K, Han B T. Approaches to high-yielding and yield potential exploration in corn. Sci Technol Rev, 2006, 24(4): 8-11 (in Chinese with English abstract).
[2] 张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 毕文波. 超高产春玉米的根系特征. 作物学报, 2011, 37: 735-743.
doi: 10.3724/SP.J.1006.2011.00735
Zhang Y Q, Yang H S, Gao J L, Zhang R F, Wang Z G, Xu S J, Fan X Y, Bi W B. Root characteristics of super high-yield spring maize. Acta Agron Sin, 2011, 37: 735-743 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.00735
[3] Chilundo M, Joel A, Wesström I, Brito R, Messing I. Effects of reduced irrigation dose and slow-release fertilizer on nitrogen use efficiency and crop yield in a semiarid loamy sand. Agric Water Manag, 2016, 168: 68-77.
doi: 10.1016/j.agwat.2016.02.004
[4] 杜君, 杨占平, 魏义长, 杨竹青, 雷宏军, 张运红, 和爱玲. 北方夏玉米滴灌施肥一体化技术应用效果. 核农学报, 2020, 34: 621-628.
doi: 10.11869/j.issn.100-8551.2020.03.0621
Du J, Yang Z P, Wei Y C, Yang Z Q, Lei H J, Zhang Y H, He A L. Application effect of integrated drip irrigation and fertilization Technology for summer maize in Northern China. J Nucl Agric Sci, 2020, 34: 621-628 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2020.03.0621
[5] 梅园雪, 冯玉涛, 冯天骄, 汪伟, 孙宝忠. 玉米浅埋滴灌节水种植模式产量与效益分析. 玉米科学, 2018, 26(1): 98-102.
Mei Y X, Feng Y T, Feng T J, Wang W, Sun Z B. Brief discussion on the efficient water-saving planting mode of shallow buried drip irrigation. J Maize Sci, 2018, 26(1): 98-102 (in Chinese with English abstract).
[6] 张明伟, 杨恒山, 范秀艳, 张瑞富, 张玉芹. 浅埋滴灌下水氮减量对春玉米干物质积累及水氮利用效率的影响. 玉米科学, 2021, 29(2): 149-156.
Zhang M W, Yang H S, Fan X Y, Zhang R F, Zhang Y Q. Effect of reduction of nitrogen and irrigation on dry matter accumulation and utilization efficiency of water and nitrogen of spring maize in shallow drip irrigation. J Maize Sci, 2021, 29(2): 149-156 (in Chinese with English abstract).
[7] 杨恒山, 薛新伟, 张瑞富, 李金琴, 王宇飞, 邰继承, 刘晶. 灌溉方式对西辽河平原玉米产量及水分利用效率的影响. 农业工程学报, 2019, 35(21): 69-77.
Yang H S, Xue X W, Zhang R F, Li J Q, Wang Y F, Tai J C, Liu J. Effects of irrigation methods on yield and water use efficiency of maize in the West Liaohe Plain. Trans CSAE, 2019, 35(21): 69-77 (in Chinese with English abstract).
[8] Gheysari M, Mirlatifi S M, Bannayan M, Homaee M, Hoogenboom G. Interaction of water and nitrogen on maize grown for silage. Agric Water Manag, 2009, 96: 809-821.
doi: 10.1016/j.agwat.2008.11.003
[9] Liang B C, Mackenzie A F. Corn yield, nitrogen uptake and nitrogen use efficiency as influenced by nitrogen fertilization. Can J Soil Sci, 1994, 74: 235-240.
doi: 10.4141/cjss94-032
[10] Joseph M, Craine. Competition for nutrients and optimal root allocation. Plant Soil, 2006, 285: 171-185.
doi: 10.1007/s11104-006-9002-x
[11] Kang S Z, Shi W J, Zhang J H. An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crops Res, 2000, 67: 207-214.
doi: 10.1016/S0378-4290(00)00095-2
[12] Thorup-Kristensen K, Dresboll D B, Kristensen H L. Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N recycling through fertility building crops. Eur J Agron, 2012, 37: 66-82.
doi: 10.1016/j.eja.2011.11.004
[13] Maeght J L, Rewald B, Pierret A. How to study deep roots—and why it matters. Front Plant Sci, 2013, 4: 299.
[14] Grant J C, Nichols D, Yao L R, Smith G, Brennan P D, Vanclay J K. Depth distribution of roots of Eucalyptus dunnii and Corymbia citriodora subsp. variegata in different soil conditions. For Ecol Manag, 2012, 269: 249-258.
doi: 10.1016/j.foreco.2011.12.033
[15] Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J, 1982, 74: 562-564.
doi: 10.2134/agronj1982.00021962007400030037x
[16] Tierney G L, Fahey T J. Evaluating minirhizotron estimates of fine root longevity and production in the forest floor of a temperate broadleaf forest. Plant Soil, 2001, 229: 167-176.
doi: 10.1023/A:1004829423160
[17] 陈建文, 王孟本, 史建伟. 柠条人工林幼林与成林细根动态比较研究. 生态学报, 2011, 31: 6978-6988.
Chen J W, Wang M B, Shi J W. A comparative study of the spatial-temporal patterns of fine roots between young and mature Caragana korshinskii plantations. Acta Ecol Sin, 2011, 31: 6978-6988.
[18] Taylor B N, Beidler K V, Strand A E, Pritchard S G. Improved scaling of minirhizotron data using an empirically-derived depth of field and correcting for the underestimation of root diameters. Plant Soil, 2014, 374: 941-948.
doi: 10.1007/s11104-013-1930-7
[19] Box J E, Ramsuer E L. Minirhizotron wheat root data: comparisons to soil core root data. Agron J, 1993, 85: 1058-1060.
doi: 10.2134/agronj1993.00021962008500050019x
[20] Vadez V. Root hydraulics: the forgotten side of roots in drought adaptation. Field Crops Res, 2014, 165: 15-24.
doi: 10.1016/j.fcr.2014.03.017
[21] Palta J A. Crop root system behavior and yield. Field Crops Res, 2014, 165: 1-4.
doi: 10.1016/j.fcr.2014.06.024
[22] Vamerali T, Saccomani M, Bona S, Mosca G, Guarise M, Ganis A. A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant Soil, 2003, 255: 157-167.
doi: 10.1023/A:1026123129575
[23] El-Hendawy S E, Hokam E M, Schmidhalter U. Drip irrigation frequency: the effects and their interaction with nitrogen fertilization on sandy soil water distribution, maize yield and water use efficiency under Egyptian conditions. J Agron Crop Sci, 2008, 194: 180-192.
doi: 10.1111/j.1439-037X.2008.00304.x
[24] 邹海洋, 张富仓, 张雨新, 陈东峰, 陆军胜, 郑静. 适宜滴灌施肥量促进河西春玉米根系生长提高产量. 农业工程学报, 2017, 33(21): 145-155.
Zou H Y, Zhang F C, Zhang Y X, Chen D F, Lu J S, Zheng J. Optimal drip irrigation and fertilization amount enhancing root growth and yield of spring maize in Hexi region of China. Trans CSAE, 2017, 33(21): 145-155 (in Chinese with English abstract).
[25] Pandey R K, Maraville J W, Admou A. Tropical wheat response to irrigation and nitrogen in a Sahelian environment: I.Gain yield, yield components and water use efficiency. Eur J Agron, 2001, 15: 93-105.
doi: 10.1016/S1161-0301(01)00098-3
[26] 王志刚, 王俊, 高聚林, 尹斌, 白建芳, 余少波, 梁红伟, 李雅剑. 模拟根层障碍条件下不同深度玉米根系与产量的关系研究. 玉米科学, 2015, 23(5): 61-65.
Wang Z G, Wang J, Gao J L, Yin B, Bai J F, Yu S B, Liang H W, Li Y J. Relationship of roots in different soil strata and yield of maize under simulated obstacle of root layer. J Maize Sci, 2015, 23(5): 61-65 (in Chinese with English abstract).
[27] 王飞飞, 张善平, 邵立杰, 李耕, 陈晓璐, 刘鹏, 赵秉强, 董树亭, 张吉旺, 赵斌. 夏玉米不同土层根系对花后植株生长及产量形成的影响. 中国农业科学, 2013, 46: 4007-4017.
doi: 10.3864/j.issn.0578-1752.2013.19.006
Wang F F, Zhang S P, Shao L J, Li G, Chen X L, Liu P, Zhao B Q, Dong S T, Zhang J W, Zhao B. Effect of root in different soil layers on plant growth and yield formation after anthesis in summer maize. Sci Agric Sin, 2013, 46: 4007-4017 (in Chinese with English abstract).
[28] Hu T T, Kang S Z, Li F S, Zhang J H. Effects of partial root-zone irrigation on the nitrogen absorption and utilization of maize. Agric Water Manag, 2009, 96: 208-214.
doi: 10.1016/j.agwat.2008.07.011
[29] Diouf O, Brou Y C, Diouf M, Sarr B, Eyletters M, Roy-Macauley H, Delhaye J P. Response of pearl millet to nitrogen as affected by water deficit. Agronomie, 2004, 24: 77-84.
doi: 10.1051/agro:2004001
[30] 楚光红, 章建新, 高阳, 傅积海, 唐长青, 王娜. 施氮量对滴灌超高产春玉米根系时空分布及产量的影响. 干旱地区农业研究, 2018, 36(3): 156-160.
Chu G H, Zhang J X, Gao Y, Fu J H, Tang C Q, Wang N. Effects of nitrogen application rate on temporal and spatial distribution characteristics of super high yield spring maize root and yield under drip irrigation. Agric Res Arid Areas, 2018, 36(3): 156-160 (in Chinese with English abstract).
[31] 陆大克, 段骅, 王维维, 刘明爽, 魏艳秋, 徐国伟. 不同干湿交替灌溉与氮肥形态耦合下水稻根系生长及功能差异. 植物营养与肥料学报, 2019, 25: 1362-1372.
Lu D K, Duan H, Wang W W, Liu M S, Wei Y Q, Xu G W. Comparison of rice root development and function among different degrees of dry-wet alternative irrigation coupled with nitrogen forms. J Plant Nutr Fert, 2019, 25: 1362-1372 (in Chinese with English abstract).
[32] 马存金, 刘鹏, 赵秉强, 张善平, 冯海娟, 赵杰, 杨今胜, 董树亭, 张吉旺, 赵斌. 施氮量对不同氮效率玉米品种根系时空分布及氮素吸收的调控. 植物营养与肥料学报, 2014, 20: 845-859.
Ma C J, Liu P, Zhao B Q, Zhang S P, Feng H J, Zhao J, Yang J S, Dong S T, Zhang J W, Zhao B. Regulation of nitrogen application rate on temporal and spatial distribution of roots and nitrogen uptake in different N use efficiency maize cultivars. J Plant Nutr Fert, 2014, 20: 845-859 (in Chinese with English abstract).
[33] 谭军利, 王林权, 王西娜, 李生秀. 水肥异区交替灌溉对夏玉米生理指标的影响. 西北植物学报, 2010, 30: 344-349.
Tan J L, Wang L Q, Wang X N, Li S X. Effect of alternate irrigation with water and fertilizer in different furrows on physiological indexes of summer maize. Acta Bot Borealli-Occident Sin, 2010, 30: 344-349 (in Chinese with English abstract).
[34] Pregitzer K S, Kubiske M E, Yu C K, Hendrick R L. Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia, 1997, 111: 302-308.
doi: 10.1007/s004420050239 pmid: 28308123
[35] Kang S Z, Zhang J H. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. J Exp Bot, 2004, 55: 2437-2446.
pmid: 15361526
[36] 葛选良, 杨恒山, 张雨珊, 张瑞富, 刘晶, 李维敏, 刘欣博. 浅埋滴灌下不同施氮量对玉米产量和花后氮代谢的影响. 植物营养与肥料学报, 2022, 28: 1603-1613.
Ge X L, Yang H S, Zhang Y S, Zhang R F, Liu J, Li W M, Liu X B. Effects of nitrogen application rate on maize yield and nitrogen metabolism after anthesis under shallow buried drip irrigation. J Plant Nutr Fert, 2022, 28: 1603-1613 (in Chinese with English abstract).
[1] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[2] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[3] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[4] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[5] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[6] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[7] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[8] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[9] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[10] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[11] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[12] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
[13] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[14] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[15] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .