• •
魏琦1,2,何冠华2,*,张登峰2,李永祥2,刘旭洋2,唐怀君3,刘成3,王天宇2,黎裕2,路运才1,*,李春辉2
WEI Qi1,2,HE Guan-Hua2,*,ZHANG Deng-Feng2,LI Yong-Xiang2,LIU Xu-Yang2,TANG Huai-Jun3,LIU Cheng3,WANG Tian-Yu2, LI Yu2,LU Yun-Cai1,*,LI Chun-Hui2
摘要: 干旱是玉米生长发育过程中影响最严重的非生物胁迫因素之一,挖掘玉米抗旱相关基因并将其应用于培育抗旱新品种是解决该问题的有效途径。为了挖掘玉米抗旱关键基因,本研究利用干旱敏感自交系B73及抗旱自交系SL001开展抗旱表型鉴定,发现干旱胁迫后SL001较B73的萎蔫程度更小,复水后的存活率显著高于B73,且干旱胁迫后SL001相对含水量和净光合速率等表型性状均显著高于B73。通过对B73和SL001不同干旱胁迫条件下的转录组数据分析,共鉴定出11,240个差异表达基因,其中4354个基因在中度干旱胁迫和重度干旱胁迫处理时差异表达,且不在正常水分处理时差异表达。这些基因主要富集于植物激素信号转导途径和植物-病原体互作途径。在这些基因中预测了2个玉米抗旱候选基因Zm00001eb439810、Zm00001eb365420,并进行了qRT-PCR验证,结果表明作为抗旱候选基因Zm00001eb439810可能正向调控玉米对干旱胁迫的响应,而Zm00001eb365420可能负向调控玉米对干旱胁迫的响应。本研究为玉米抗旱提供了重要材料和基因资源。
[1] Yang Z R, Cao Y B, Shi Y T, Qin F, Jiang C F, Yang S H. Genetic and molecular exploration of maize environmental stress resilience: toward sustainable agriculture. Mol Plant, 2023, 16: 1496–1517. [2] Yang Z R, Wang C, Zhu T F, He J F, Wang Y J, Yang S P, Liu Y, Zhao B C, Zhu C H, Ye S Q, et al. An LRR-RLK protein modulates drought- and salt-stress responses in maize. J Genet Genom, 2025, 52: 388–399. [3] Liu H J, Liu J, Zhai Z W, Dai M Q, Tian F, Wu Y R, Tang J H, Lu Y L, Wang H Y, Jackson D, et al. Maize2035: a decadal vision for intelligent maize breeding. Mol Plant, 2025, 18: 313–332. [4] Liu S X, Li C P, Wang H W, Wang S H, Yang S P, Liu X H, Yan J B, Li B L, Beatty M, Zastrow-Hayes G, et al. Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biol, 2020, 21: 163. [5] Zhong Y, Yan X C, Wang N, Zenda T, Dong A Y, Zhai X Z, Yang Q, Duan H J. ZmHB53, a maize homeodomain-leucine zipper I transcription factor family gene, contributes to abscisic acid sensitivity and confers seedling drought tolerance by promoting the activity of ZmPYL4. Plant Cell Environ, 2025, 48: 3829–3843. [6] Xiang Y, Liu W J, Niu Y X, Li Q, Zhao C Y, Pan Y T, Li G D, Bian X L, Miao Y D, Zhang A Y. The maize GSK3-like kinase ZmSK1 negatively regulates drought tolerance by phosphorylating the transcription factor ZmCPP2. Plant Cell, 2025, 37: koaf032. [7] He F, Niu M X, Wang T, Li J L, Shi Y J, Zhao J J, Li H, Xiang X, Yang P, Wei S Y, et al. The ubiquitin E3 ligase RZFP1 affects drought tolerance in poplar by mediating the degradation of the protein phosphatase PP2C-9. Plant Physiol, 2024, 196: 2936–2955. [8] Wang Y L, Cheng J K, Guo Y Z, Li Z, Yang S H, Wang Y, Gong Z Z. Phosphorylation of ZmAL14 by ZmSnRK2.2 regulates drought resistance through derepressing ZmROP8 expression. J Integr Plant Biol, 2024, 66: 1334–1350. [9] Liu L J, Tang C, Zhang Y H, Sha X Y, Tian S B, Luo Z Y, Wei G C, Zhu L, Li Y X, Fu J Y, et al. The SnRK2.2-ZmHsf28-JAZ14/17 module regulates drought tolerance in maize. New Phytol, 2025, 245: 1985–2003. [10] Gulzar F, Fu J Y, Zhu C Y, Yan J, Li X L, Meraj T A, Shen Q Q, Hassan B, Wang Q. Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis. Int J Mol Sci, 2021, 22: 10080. [11] Hu X Y, Cheng J K, Lu M M, Fang T T, Zhu Y J, Li Z, Wang X Q, Wang Y, Guo Y, Yang S H, et al. Ca2+-independent ZmCPK2 is inhibited by Ca2+-dependent ZmCPK17 during drought response in maize. J Integr Plant Biol, 2024, 66: 1313–1333. [12] Guo Y Z, Shi Y B, Wang Y L, Liu F, Li Z, Qi J S, Wang Y, Zhang J B, Yang S H, Wang Y, et al. The clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. New Phytol, 2023, 237: 1728–1744. [13] Dai K, Zhang Z Y, Wang S, Yang J W, Wang L F, Jia T J, Li J J, Wang H, Song S, Lu Y C, et al. Molecular mechanisms of heterosis under drought stress in maize hybrids Zhengdan7137 and Zhengdan7153. Front Plant Sci, 2024, 15: 1487639. [14] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 等. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘. 作物学报, 2024, 50: 1896–1906. Liu S, Li S, Wang D M, Sha X Q, He G H, Zhang D F, Li Y X, Liu X Y, Wang T Y, Li Y, et al. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte. Acta Agron Sin, 2024, 50: 1896–1906 (in Chinese with English abstract). [15] Wei S W, Xia R, Chen C X, Shang X L, Ge F Y, Wei H M, Chen H B, Wu Y R, Xie Q. ZmbHLH124 identified in maize recombinant inbred lines contributes to drought tolerance in crops. Plant Biotechnol J, 2021, 19: 2069–2081. [16] Xiang Y, Li G D, Li Q, Niu Y X, Pan Y T, Cheng Y, Bian X L, Zhao C Y, Wang Y H, Zhang A Y. Autophagy receptor ZmNBR1 promotes the autophagic degradation of ZmBRI1a and enhances drought tolerance in maize. J Integr Plant Biol, 2024, 66: 1068–1086. [17] Li Y P, Su Z J, Lin Y N, Xu Z H, Bao H Z, Wang F G, Liu J, Hu S P, Wang Z G, Yu X F, et al. Utilizing transcriptomics and metabolomics to unravel key genes and metabolites of maize seedlings in response to drought stress. BMC Plant Biol, 2024, 24: 34. [18] Gu L, Chen X X, Hou Y Y, Cao Y Y, Wang H C, Zhu B, Du X Y, Wang H N. ZmWRKY30 modulates drought tolerance in maize by influencing myo-inositol and reactive oxygen species homeostasis. Physiol Plant, 2024, 176: e14423. [19] Li X D, Gao Y Q, Wu W H, Chen L M, Wang Y. Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells. Plant Biotechnol J, 2022, 20: 143–157. [20] Li D, Wang H Q, Luo F S, Li M R, Wu Z Q, Liu M Y, Wang Z, Zang Z Y, Jiang L Y. A maize calmodulin-like 3 gene positively regulates drought tolerance in maize and Arabidopsis. Int J Mol Sci, 2025, 26: 1329. [21] He Z H, Wu J F, Sun X P, Dai M Q. The maize clade A PP2C phosphatases play critical roles in multiple abiotic stress responses. Int J Mol Sci, 2019, 20: 3573. [22] Li P C, Zhu T Z, Wang Y Y, Zhang X M, Yang X Y, Fang S, Li W, Rui W Y, Yang A Q, Duan Y M, et al. Natural variation in a cortex/epidermis-specific transcription factor bZIP89 determines lateral root development and drought resilience in maize. Sci Adv, 2025, 11: eadt1113. [23] Chong L, Xu R, Huang P C, Guo P C, Zhu M K, Du H, Sun X L, Ku L X, Zhu J K, Zhu Y F. The tomato OST1-VOZ1 module regulates drought-mediated flowering. Plant Cell, 2022, 34: 2001–2018. [24] Fàbregas N, Yoshida T, Fernie A R. Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants. Nat Commun, 2020, 11: 6184. [25] Du C, Bai H Y, Yan Y J, Liu Y R, Wang X Y, Zhang Z H. Exploring ABI5 regulation: Post-translational control and cofactor interactions in ABA signaling. Plant J, 2025, 121: e17232. [26] Li G J, Chen K, Sun S J, Zhao Y. Osmotic signaling releases PP2C-mediated inhibition of Arabidopsis SnRK2s via the receptor-like cytoplasmic kinase BIK1. EMBO J, 2024, 43: 6076–6103. [27] Xiong Y L, Song X Y, Mehra P, Yu S H, Li Q Y, Tashenmaimaiti D, Bennett M, Kong X Z, Bhosale R, Huang G Q. ABA-auxin cascade regulates crop root angle in response to drought. Curr Biol, 2025, 35: 542–553. [28] Hasan M M, Liu X D, Waseem M, Yao G Q, Alabdallah N M, Jahan M S, Fang X W. ABA activated SnRK2 kinases: an emerging role in plant growth and physiology. Plant Signal Behav, 2022, 17: 2071024. [29] Song J, Sun P P, Kong W N, Xie Z Z, Li C L, Liu J H. SnRK2.4-mediated phosphorylation of ABF2 regulates ARGININE DECARBOXYLASE expression and putrescine accumulation under drought stress. New Phytol, 2023, 238: 216–236. [30] Qin C H, Fan X, Fang Q Q, Ni L, Jiang M Y. The CBL-interacting protein kinase OsCIPK1 phosphorylated by SAPK10 positively regulates responses to ABA and osmotic stress in rice. Crop J, 2024, 12: 364–374. [31] Li X X, Yu B, Wu Q, Min Q, Zeng R F, Xie Z Z, Huang J L. OsMADS23 phosphorylated by SAPK9 confers drought and salt tolerance by regulating ABA biosynthesis in rice. PLoS Genet, 2021, 17: e1009699. [32] Wu Q, Liu Y F, Xie Z Z, Yu B, Sun Y, Huang J L. OsNAC016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8. Plant Physiol, 2022, 189: 1296–1313. [33] Bae Y, Lim C W, Lee S C. Pepper stress-associated protein 14 is a substrate of CaSnRK2.6 that positively modulates abscisic acid-dependent osmotic stress responses. Plant J, 2023, 113: 357–374. [34] Lan G, Ma W F, Nai G J, Liang G P, Lu S X, Ma Z H, Mao J, Chen B H. Grape SnRK2.7 positively regulates drought tolerance in transgenic Arabidopsis. Int J Mol Sci, 2024, 25: 4473. [35] Lu F Z, Li W C, Peng Y L, Cao Y, Qu J T, Sun F A, Yang Q Q, Lu Y L, Zhang X H, Zheng L J, et al. ZmPP2C26 alternative splicing variants negatively regulate drought tolerance in maize. Front Plant Sci, 2022, 13: 851531. [36] Wang J Y, Li C N, Li L, Gao L F, Hu G, Zhang Y F, Reynolds M P, Zhang X Y, Jia J Z, Mao X G, et al. DIW1 encoding a clade I PP2C phosphatase negatively regulates drought tolerance by de-phosphorylating TaSnRK1.1 in wheat. J Integr Plant Biol, 2023, 65: 1918–1936. [37] Zhai Z K, Ao Q Q, Yang L Q, Lu F X, Cheng H K, Fang Q X, Li C, Chen Q Q, Yan J L, Wei Y S, et al. Rapeseed PP2C37 interacts with PYR/PYL abscisic acid receptors and negatively regulates drought tolerance. J Agric Food Chem, 2024, 72: 12445–12458. [38] Zhu C G, Jing B Y, Lin T, Li X Y, Zhang M, Zhou Y H, Yu J Q, Hu Z J. Phosphorylation of sugar transporter TST2 by protein kinase CPK27 enhances drought tolerance in tomato. Plant Physiol, 2024, 195: 1005–1024. [39] Ma X, Li Y, Gai W X, Li C, Gong Z H. The CaCIPK3 gene positively regulates drought tolerance in pepper. Hortic Res, 2021, 8: 216. [40] Li T, Zhou X N, Wang Y X, Liu X Q, Fan Y D, Li R Q, Zhang H Y, Xu Y F. AtCIPK20 regulates microtubule stability to mediate stomatal closure under drought stress in Arabidopsis. Plant Cell Environ, 2024, 47: 5297–5314. [41] Nguyen K H, Ha C V, Nishiyama R, Watanabe Y, Leyva-González M A, Fujita Y, Tran U T, Li W Q, Tanaka M, Seki M, et al. Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc Natl Acad Sci USA, 2016, 113: 3090–3095 |
[1] | 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163. |
[2] | 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203. |
[3] | 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990. |
[4] | 张建鹏, 王国瑞, 别海, 叶飞宇, 马晨晨, 梁小菡, 鲁晓民, 尚霄丽, 曹丽茹. 转录因子ZmMYB153通过ABA信号调节气孔运动增强玉米苗期抗旱性[J]. 作物学报, 2025, 51(7): 1827-1837. |
[5] | 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900. |
[6] | 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675. |
[7] | 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513. |
[8] | 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581. |
[9] | 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617. |
[10] | 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628. |
[11] | 蒋雨洲, 王甲, 张宏媛, 冯文豪, 王鹏, 李玉义. 化肥配施有机物料对玉米田土壤细菌和真菌群落结构的影响[J]. 作物学报, 2025, 51(5): 1378-1388. |
[12] | 周科, 陈鹏飞. 耦合多源无人机遥感数据和机器学习方法的玉米SPAD估测[J]. 作物学报, 2025, 51(5): 1389-1399. |
[13] | 盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应[J]. 作物学报, 2025, 51(5): 1286-1298. |
[14] | 孟凡琦, 房孟颖, 罗艺, 卢霖, 董学瑞, 王亚菲, 郭丽娜, 闫鹏, 董志强, 张凤路. 乙烯利-甜菜碱-水杨酸合剂对夏玉米耐热性和产量的调控效应[J]. 作物学报, 2025, 51(5): 1299-1311. |
[15] | 陆雯佳, 汪军成, 姚立蓉, 张宏, 司二静, 杨轲, 孟亚雄, 李葆春, 马小乐, 王化俊. 大麦PRX基因家族全基因组鉴定及其干旱胁迫下的表达分析[J]. 作物学报, 2025, 51(5): 1198-1214. |
|