欢迎访问作物学报,今天是

作物学报

• •    

玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析

杨晓慧1,2,晏宣军2,3,杨文妍2,付俊杰2,杨琴1,*,谢玉心2,*   

  1. 1西北农林科技大学农学院 / 作物抗逆与高效生产全国重点实验室 / 农业农村部西北旱区玉米生物学与遗传育种重点实验室, 陕西杨凌712100; 2中国农业科学院作物科学研究所 / 作物基因资源与育种全国重点实验室, 北京100081; 3海南大学 / 热带农林学院, 海南海口570228
  • 收稿日期:2024-11-15 修回日期:2025-03-26 接受日期:2025-03-26 网络出版日期:2025-04-01
  • 基金资助:
    本研究由国家自然科学基金项目(32101809)和中国农业科学院科技创新工程项目资助。

Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size

YANG Xiao-Hui1,2,YAN Xuan-Jun2,3,YANG Wen-Yan2,FU Jun-Jie2,YANG Qin1,*,XIE Yu-Xin2,*   

  1. 1 College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Resistance and High-Efficiency Production / Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling 711200, Shaanxi, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081, China; 3 Hainan University / College of Tropical Agriculture and Forestry, Haikou 570228, Hainan, China
  • Received:2024-11-15 Revised:2025-03-26 Accepted:2025-03-26 Published online:2025-04-01
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32101809) and the Innovation Program of Chinese Academy of Agricultural Sciences.

摘要:

为评估玉米籽粒大小调控基因ZmKL1不同等位基因对农艺性状的效应,解析其调控籽粒大小的分子机制,本研究构建了近等基因系(NIL),在2个地点调查其田间表型、穗部及籽粒表型,并进行转录组与蛋白组测序,共同解析不同等位基因对籽粒大小的调控效应。结果显示,NIL群体在粒长、粒宽、百粒重、株高及穗位高方面存在显著差异,花期及穗部表型等方面无差异。2组NIL间差异表达基因总数为744个、差异表达蛋白总数为152个。GO分析发现差异表达基因富集于蛋白结合、氧化还原酶活性等途径,差异表达蛋白则与转录、基因表达调控、RNA生物合成及代谢调控过程密切相关。进一步利用荧光定量PCR试验对8个关键基因的表达差异进行了验证。本研究对ZmKL1等位基因进行了表型评估,发现ZmKL1优异等位基因在玉米产量性状改良方面具有一定的应用潜力;同时联合转录组与蛋白组初步解析了其调控籽粒大小的机制,为进一步挖掘影响籽粒大小关键基因及通路提供了思路。

关键词: 玉米籽粒, 转录组, 蛋白组, 等位基因, 近等基因系

Abstract:

To evaluate the effects of different alleles of the kernel size-related gene ZmKL1 on agronomic traits and to elucidate the molecular mechanisms by which ZmKL1 regulates kernel size in maize, this study constructed near-isogenic lines (NILs) and analyzed their field performance, ear morphology, and kernel traits at two locations. Transcriptome and proteome analyses were conducted to explore the regulatory effects of different alleles on kernel size. The results revealed significant differences in kernel length, kernel width, hundred-kernel weight, plant height, and ear height among the NILs, while no significant differences were observed in flowering time or ear traits. A total of 744 differentially expressed genes (DEGs) and 152 differentially expressed proteins (DEPs) were identified between the two NIL groups. Gene Ontology (GO) analysis indicated that DEGs were enriched in pathways related to protein binding and oxidoreductase activity, while DEPs were primarily associated with transcriptional regulation, gene expression, RNA biosynthesis, and metabolic processes. The expression differences of eight key genes were further validated by quantitative real-time PCR (qRT-PCR). This study not only provides a comprehensive phenotypic assessment of ZmKL1 alleles, demonstrating the potential of the favorable allele for maize yield improvement, but also offers preliminary insights into the molecular mechanisms underlying ZmKL1-mediated kernel size regulation through integrative transcriptomic and proteomic analyses. These findings contribute to the identification of key genes and pathways involved in maize kernel development, laying the foundation for future genetic improvement strategies.

Key words: maize kernel, transcriptome, proteome, allele, near-isogenic line

[1] Li X P, Zhou Z J, Ding J Q, Wu Y B, Zhou B, Wang R X, Ma J L, Wang S W, Zhang X C, Xia Z L, et al. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Front Plant Sci, 2016, 7: 833.

[2] Lu X D, Liu J S, Ren W, Yang Q, Chai Z G, Chen R M, Wang L, Zhao J, Lang Z H, Wang H Y, et al. Gene-indexed mutations in maize. Mol Plant, 2018, 11: 496–504.

[3] Liang L, Zhou L, Tang Y P, Li N K, Song T, Shao W, Zhang Z R, Cai P, Feng F, Ma Y F, et al. A sequence-indexed Mutator insertional library for maize functional genomics study. Plant Physiol, 2019, 181: 1404–1414.

[4] Dai D W, Ma Z Y, Song R T. Maize kernel development. Mol Breed, 2021, 41: 2.

[5] Cai M J, Li S Z, Sun F, Sun Q, Zhao H L, Ren X M, Zhao Y X, Tan B C, Zhang Z X, Qiu F Z. Emp10 encodes a mitochondrial PPR protein that affects the Cis-splicing of nad2 intron 1 and seed development in maize. Plant J, 2017, 91: 132–144.

[6] Ren X M, Pan Z Y, Zhao H L, Zhao J L, Cai M J, Li J, Zhang Z X, Qiu F Z. EMPTY PERICARP11 serves as a factor for splicing of mitochondrial nad1 intron and is required to ensure proper seed development in maize. J Exp Bot, 2017, 68: 4571–4581.

[7] Li X J, Zhang Y F, Hou M M, Sun F, Shen Y, Xiu Z H, Wang X M, Chen Z L, Sun S S M, Small I, et al. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J, 2014, 79: 797–809.

[8] Xu C H, Song S, Yang Y Z, Lu F, Zhang M D, Sun F, Jia R X, Song R L, Tan B C. DEK46 performs C-to-U editing of a specific site in mitochondrial nad7 introns that is critical for intron splicing and seed development in maize. Plant J, 2020, 103: 1767–1782.

[9] Gao J, Zhang L, Du H N, Dong Y B, Zhen S H, Wang C, Wang Q L, Yang J Y, Zhang P F, Zheng X, et al. An ARF24-ZmArf2 module influences kernel size in different maize haplotypes. J Integr Plant Biol, 2023, 65: 1767–1781.

[10] Qi W W, Zhu J, Wu Q, Wang Q, Li X, Yao D S, Jin Y, Wang G, Wang G F, Song R T. Maize reas1 mutant stimulates ribosome use efficiency and triggers distinct transcriptional and translational responses. Plant Physiol, 2016, 170: 971–988.

[11] Wang H Q, Wang K, Du Q G, Wang Y F, Fu Z Y, Guo Z Y, Kang D M, Li W X, Tang J H. Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. New Phytol, 2018, 218: 1233–1246.

[12] Pang J L, Fu J J, Zong N, Wang J, Song D D, Zhang X, He C, Fang T, Zhang H W, Fan Y L, et al. Kernel size-related genes revealed by an integrated eQTL analysis during early maize kernel development. Plant J, 2019, 98: 19–32.

[13] Chen L, Li Y X, Li C H, Shi Y S, Song Y C, Zhang D F, Wang H Y, Li Y, Wang T Y. The retromer protein ZmVPS29 regulates maize kernel morphology likely through an auxin-dependent process(es). Plant Biotechnol J, 2020, 18: 1004–1014.

[14] Yang N, Liu J, Gao Q, Gui S T, Chen L, Yang L F, Huang J, Deng T Q, Luo J Y, He L J, et al. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet, 2019, 51: 1052–1059.

[15] Sun Q, Li Y F, Gong D M, Hu A Q, Zhong W S, Zhao H L, Ning Q, Tan Z D, Liang K, Mu L Y, et al. A NAC-EXPANSIN module enhances maize kernel size by controlling nucellus elimination. Nat Commun, 2022, 13: 5708.

[16] Zhang Q L, Wu R H, Hong T, Wang D C, Li Q L, Wu J Y, Zhang H, Zhou K, Yang H X, Zhang T, et al. Natural variation in the promoter of qRBG1/OsBZR5 underlies enhanced rice yield. Nat Commun, 2024, 15: 8565.

[17] Li Y X, Lu J W, He C, Wu X, Cui Y, Chen L, Zhang J, Xie Y X, An Y X, Liu X Y, et al. cis-Regulatory variation affecting gene expression contributes to the improvement of maize kernel size. Plant J, 2022, 111: 1595–1608.

[18] Fu J J, Cheng Y B, Linghu J J, Yang X H, Kang L, Zhang Z X, Zhang J, He C, Du X M, Peng Z Y, et al. RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun, 2013, 4: 2832.

[19] Lister R, O’Malley R C, Tonti-Filippini J, Gregory B D, Berry C C, Harvey Millar A, Ecker J R. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 2008, 133: 523–536.

[20] Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet, 2019, 20: 631–656.

[21] Rehman A, Rehman S U, Khatoon A, Qasim M, Itoh T, Iwasaki Y, Wang X, Sunohara Y, Matsumoto H, Komatsu S. Proteomic analysis of the promotive effect of plant-derived smoke on plant growth of chickpea. J Proteomics, 2018, 176: 56–70.

[22] Meyer R R, Laine P S. The single-stranded DNA-binding protein of Escherichia coli. Microbiol Rev, 1990, 54: 342–380.

[23] Maffeo C, Aksimentiev A. Molecular mechanism of DNA association with single-stranded DNA binding protein. Nucleic Acids Res, 2017, 45: 12125–12139.

[24] Maier D, Farr C L, Poeck B, Alahari A, Vogel M, Fischer S, Kaguni L S, Schneuwly S. Mitochondrial single-stranded DNA-binding protein is required for mitochondrial DNA replication and development inDrosophila melanogaster. MBoC, 2001, 12: 821–830.

[25] Ruhanen H, Borrie S, Szabadkai G, Tyynismaa H, Jones A W E, Kang D, Taanman J W, Yasukawa T. Mitochondrial single-stranded DNA binding protein is required for maintenance of mitochondrial DNA and 7S DNA but is not required for mitochondrial nucleoid organisation. Biochim Biophys Acta, 2010, 1803: 931–939.

[26] Radulovic M, Crane E, Crawford M, Godovac-Zimmermann J, Yu V P C C. CKS proteins protect mitochondrial genome integrity by interacting with mitochondrial single-stranded DNA-binding protein. Mol Cell Proteomics, 2010, 9: 145–152.

[27] Edmondson A C, Song D Q, Alvarez L A, Wall M K, Almond D, McClellan D A, Maxwell A, Nielsen B L. Characterization of a mitochondrially targeted single-stranded DNA-binding protein in Arabidopsis thaliana. Mol Genet Genomics, 2005, 273: 115–122.

[28] Li D Q, Wu X B, Wang H F, Feng X, Yan S J, Wu S Y, Liu J X, Yao X F, Bai A N, Zhao H, et al. Defective mitochondrial function by mutation in THICK ALEURONE 1 encoding a mitochondrion-targeted single-stranded DNA-binding protein leads to increased aleurone cell layers and improved nutrition in rice. Mol Plant, 2022, 15: 1638–1639.

[29] Kozłowski J. Optimal allocation of resources to growth and reproduction: Implications for age and size at maturity. Trends Ecol Evol, 1992, 7: 15–19.

[30] Kumar N V, Varshney U. Contrasting effects of single stranded DNA binding protein on the activity of uracil DNA glycosylase from Escherichia coli towards different DNA substrates. Nucleic Acids Res, 1997, 25: 2336–2343.

[31] Selinski J, König N, Wellmeyer B, Hanke G T, Linke V, Ekkehard Neuhaus H, Scheibe R. The plastid-localized NAD-dependent malate dehydrogenase is crucial for energy homeostasis in developing Arabidopsis thaliana seeds. Mol Plant, 2014, 7: 170–186.

[32] Srivastava R, Li Z X, Russo G, Tang J, Bi R, Muppirala U, Chudalayandi S, Severin A, He M Z, Vaitkevicius S I, et al. Response to persistent ER stress in plants: a multiphasic process that transitions cells from prosurvival activities to cell death. Plant Cell, 2018, 30: 1220–1242.

[33] Yu Y J, Li J, Song B Y, Ma Z, Zhang Y F, Sun H N, Wei X S, Bai Y Y, Lu X G, Zhang P, et al. Polymeric PD-L1 blockade nanoparticles for cancer photothermal-immunotherapy. Biomaterials, 2022, 280: 121312.

[34] Li Y Q, Zhan P L, Pu R M, Xiang W Q, Meng X, Yang S Q, Hu G J, Zhao S, Han J L, Xia C, et al. Transcriptome analysis of potential regulatory genes under chemical doubling in maize haploids. Agronomy, 2024, 14: 624.

[35] Wang Y C, Xu J Y, Ge M, Ning L H, Hu M M, Zhao H. High-resolution profile of transcriptomes reveals a role of alternative splicing for modulating response to nitrogen in maize. BMC Genomics, 2020, 21: 353.

[36] Guo S, Arshad A, Yang L, Qin Y S, Mu X H, Mi G H. Comparative transcriptome analysis reveals common and developmental stage-specific genes that respond to low nitrogen in maize leaves. Plants, 2022, 11: 1550.

[1] 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899.
[2] 张金泽, 周庆国, 杨旭, 王倩, 肖莉晶, 金海润, 欧阳青静, 余坤江, 田恩堂. 芥菜型油菜响应菌核病侵染表达特性与高抗性关联基因分析[J]. 作物学报, 2025, 51(3): 621-631.
[3] 孙程明, 周晓婴, 陈锋, 张维, 王晓东, 彭琦, 郭月, 高建芹, 胡茂龙, 付三雄, 张洁夫. 长链非编码RNA (lncRNA)在甘蓝型油菜分枝角度调控中的功能分析与预测[J]. 作物学报, 2025, 51(3): 559-567.
[4] 闫秉春, 万雪, 钟敏, 刘宇奇, 赵艳泽, 姜红芳, 刘雅, 刘惠玲, 马沁春, 高继平, 张文忠. 氮素水平对北方优良食味粳米品质及精碾磨粉颗粒特性的影响[J]. 作物学报, 2025, 51(2): 503-515.
[5] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[6] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[7] 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156.
[8] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[9] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[10] 赵娜, 刘宇曦, 张朝澍, 石瑛. 不同马铃薯淀粉含量差异的转录组学解析[J]. 作物学报, 2024, 50(6): 1503-1513.
[11] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[12] 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090.
[13] 宋梦媛, 郭中校, 苏禹霏, 邓昆鹏, 兰天娇, 程钰鑫, 包淑英, 王桂芳, 窦金光, 姜泽锴, 王明海, 徐宁. 一种绿豆柱头外露突变体的转录组分析[J]. 作物学报, 2024, 50(4): 957-968.
[14] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[15] 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!