• •
许忆葳1,2,张莹莹2,李瑞2,燕永亮3,刘允军2,孔照胜1,*,郑军2,*,王逸茹2,*
XU Yi-Wei1,2,ZHANG Ying-Ying2,LI Rui2,YAN Yong-Liang3,LIU Yun-Jun2,KONG Zhao-Sheng1,*,ZHENG Jun2,*,WANG Yi-Ru2,*
摘要:
csp2基因来源于戈壁异常球菌,该菌对伽马射线、紫外线和干旱等损伤因子表现出极强的抗性。本研究按照植物密码子优化csp2并合成基因,构建p3301-csp2植物表达载体后转化玉米,在苗期和成株期评价转csp2基因玉米的耐旱性。研究发现,在干旱处理条件下,csp2过表达株系苗期相比野生型表现出了更强的耐旱表型,相对含水量显著提高,电导率、MDA含量和H2O2含量均显著降低。此外,成株期耐旱性鉴定结果表明csp2可提高玉米在干旱胁迫下的穗长和单穗重,过表达株系的产量显著高于对照。转录组分析表明,csp2通过调控茉莉酸信号通路、干旱胁迫相关激酶以及WRKY、ERF转录因子的表达响应干旱胁迫。因此,异源表达戈壁异常球菌csp2可以显著提高玉米的耐旱性,csp2可作为培育耐旱转基因玉米的优良基因。
[1] Liu S L, Xiao L J, Sun J, Yang P, Yang X G, Wu W B. Probability of maize yield failure increases with drought occurrence but partially depends on local conditions in China. Eur J Agron, 2022, 139: 126552. [2] 贾双杰, 李红伟, 江艳平, 赵国强, 王和洲, 杨慎骄, 杨青华, 郭家萌, 邵瑞鑫. 干旱胁迫对玉米叶片光合特性和穗发育特征的影响. 生态学报, 2020, 40: 854–863. Jia S J, Li H W, Jiang Y P, Zhao G Q, Wang H Z, Yang S J, Yang Q H, Guo J M, Shao R X. Effects of drought on photosynthesis and ear development characteristics of maize. Acta Ecol Sin, 2020, 40: 854–863 (in Chinese with English abstract). [3] Sah R P, Chakraborty M, Prasad K, Pandit M, Tudu V K, Chakravarty M K, Narayan S C, Rana M, Moharana D. Impact of water deficit stress in maize: phenology and yield components. Sci Rep, 2020, 10: 2944. [4] 张慧颖, 王颖, 韩成贵. 转基因技术在中国主要粮食作物改良中的研究进展. 农学学报, 2022, 12(10): 44–50. Zhang H Y, Wang Y, Han C G. Progress of transgenic technology in improving staple food crops in China. J Agric, 2022, 12(10): 44–50 (in Chinese with English abstract). [5] Wang B M, Li Z X, Ran Q J, Li P, Peng Z H, Zhang J R. ZmNF-YB16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants. Front Plant Sci, 2018, 9: 709. [6] Zhang P Y, Yuan Z, Wei L, Qiu X, Wang G R, Liu Z X, Fu J X, Cao L R, Wang T C. Overexpression of ZmPP2C55 positively enhances tolerance to drought stress in transgenic maize plants. Plant Sci, 2022, 314: 111127. [7] Tian T, Wang S H, Yang S P, Yang Z R, Liu S X, Wang Y J, Gao H J, Zhang S S, Yang X H, Jiang C F, et al. Genome assembly and genetic dissection of a prominent drought-resistant maize germplasm. Nat Genet, 2023, 55: 496–506. [8] Yuan M L, Chen M, Zhang W, Lu W, Wang J, Yang M K, Zhao P, Tang R, Li X N, Hao Y H, et al. Genome sequence and transcriptome analysis of the radioresistant bacterium Deinococcus gobiensis: insights into the extreme environmental adaptations. PLoS One, 2012, 7: e34458. [9] Yuan M L, Zhang W, Dai S M, Wu J, Wang Y D, Tao T S, Chen M, Lin M. Deinococcus gobiensis sp. nov., an extremely radiation-resistant bacterium. Int J Syst Evol Microbiol, 2009, 59: 1513–1517. [10] 江世杰, 杨明坤, 陈明, 张维, 王劲, 罗学刚. 戈壁异常球菌冷激蛋白Csp1提高大肠杆菌盐胁迫抗性. 核农学报, 2013, 27: 533–538. Jiang S J, Yang M K, Chen M, Zhang W, Wang J, Luo X G. Deinococcus gobiensis cold shock protein improves salt stress tolerance of Escherichia coli. J Nucl Agric Sci, 2013, 27: 533–538 (in Chinese with English abstract). [11] 张亨, 刘盈盈, 陈云, 平淑珍, 王劲. 戈壁异常球菌Dgl5蛋白生物学功能研究. 生物技术通报, 2018, 34(3): 177–184. Zhang H, Liu Y Y, Chen Y, Ping S Z, Wang J. Biological identification of Dgl5 in Deinococcus gobiensis I-0. Biotechnol Bull, 2018, 34(3): 177–184 (in Chinese with English abstract). [12] 杨明坤. 戈壁异常球菌Ⅰ-0冷激蛋白的功能鉴定及异源表达. 中国农业科学院硕士学位论文, 北京, 2011. Yang M K. Functional Identification and Heterologous Expression of Cold Shock Proteins in Deinococcus gobiensis Ⅰ-0. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2011 (in Chinese with English abstract). [13] 孙雪慧, 蔡勤安, 尚丽霞, 马瑞, 杨向东, 于志晶, 魏建. 耐旱基因cspB转化大豆的研究. 大豆科学, 2017, 36: 699–704. Sun X H, Cai Q A, Shang L X, Ma R, Yang X D, Yu Z J, Wei J. Genetic transformation of soybean with drought tolerance gene cspB from Bacillus subtilis. Soybean Sci, 2017, 36: 699–704 (in Chinese with English abstract). [14] Yu T F, Xu Z S, Guo J K, Wang Y X, Abernathy B, Fu J D, Chen X, Zhou Y B, Chen M, Ye X G, et al. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Sci Rep, 2017, 7: 44050. [15] 谢琳, 代其林, 王劲. PEG模拟干旱胁迫下非转基因和转csp2基因油菜种子萌发期抗旱性评价. 绵阳师范学院学报, 2014, 33(8): 78–82. Xie L, Dai Q L, Wang J. Evaluation of drought resistance of transgenic and non- transgenic at seed germination stage under PEG-6000 stress. J Mianyang Norm Univ, 2014, 33(8): 78–82 (in Chinese with English abstract). [16] Castiglioni P, Warner D, Bensen R J, Anstrom D C, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, et al. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water–limited conditions. Plant Physiol, 2008, 147: 446–455. [17] Wang X D, Guo Y H, Wang Y R, Peng Y L, Zhang H W, Zheng J. ZmHDT103 negatively regulates drought stress tolerance in maize seedlings. Agronomy, 2024, 14: 134. [18] Barrs H D, Weatherley P E. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust Jnl Bio Sci, 1962, 15: 413. [19] Zhou W J, Leul M. Uniconazole-induced alleviation of freezing injury in relation to changes in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regul, 1998, 26: 41–47. [20] Chalmel F, Lardenois A, Thompson J D, Muller J, Sahel J A, Léveillard T, Poch O. GOAnno: GO annotation based on multiple alignment. Bioinformatics, 2005, 21: 2095–2096. [21] Lobell D B, Deines J M, Tommaso S D. Changes in the drought sensitivity of US maize yields. Nat Food, 2020, 1: 729–735. [22] Leng G Y, Hall J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci Total Environ, 2019, 654: 811–821. [23] 晏胜伟, 孙程, 周晓今, 陈茹梅. 玉米JAZ家族基因ZmJAZ4的克隆及功能分析. 生物技术通报, 2015, 31(3): 96–101. Yan S W, Sun C, Zhou X J, Chen R M. Cloning and characterization analysis of ZmJAZ4, a JAZ family gene in maize (Zea mays L.). Biotechnol Bull, 2015, 31(3): 96–101 (in Chinese with English abstract). [24] Li Z C, Luo X, Ou Y, Jiao H J, Peng L, Fu X, Macho A P, Liu R Y, He Y H. JASMONATE-ZIM DOMAIN proteins engage Polycomb chromatin modifiers to modulate Jasmonate signaling in Arabidopsis. Mol Plant, 2021, 14: 732–747.
[25] 李敏, 伍国强, 魏明, 刘晨. 植物CDPK在响应逆境胁迫中的作用及机制. 生物工程学报, 2024, 40: 3337–3359. [26] Hu X Y, Cheng J K, Lu M M, Fang T T, Zhu Y J, Li Z, Wang X Q, Wang Y, Guo Y, Yang S H, et al. Ca2+-independent ZmCPK2 is inhibited by Ca2+-dependent ZmCPK17 during drought response in maize. J Integr Plant Biol, 2024, 66: 1313–1333. [27] Jiang S S, Zhang D, Wang L, Pan J W, Liu Y, Kong X P, Zhou Y, Li D Q. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem, 2013, 71: 112–120. [28] Xu J, Tian Y S, Peng R H, Xiong A S, Zhu B, Jin X F, Gao F, Fu X Y, Hou X L, Yao Q H. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta, 2010, 231: 1251–1260. [29] Kim M J, Park M J, Seo P J, Song J S, Kim H J, Park C M. Controlled nuclear import of the transcription factor NTL6 reveals a cytoplasmic role of SnRK2.8 in the drought-stress response. Biochem J, 2012, 448: 353–363. [30] 张中保, 李向龙, 吴忠义, 魏建华. 玉米1, 3, 4-三磷酸肌醇5/6激酶ITPK家族基因的鉴定和分析. 科技导报, 2015, 33(16): 46–50. Zhang Z B, Li X L, Wu Z Y, Wei J H. Genome-wide analysis and identification of inositol 1, 3, 4-trisphosphate 5/6-kinase gene family in maize (Zea mays L.). Sci Technol Rev, 2015, 33(16): 46–50 (in Chinese with English abstract). [31] Zhang Z B, Li X L, Yu R, Han M, Wu Z Y. Isolation, structural analysis, and expression characteristics of the maize TIFY gene family. Mol Genet Genomics, 2015, 290: 1849–1858. [32] Zhou X J, Yan S W, Sun C, Li S Z, Li J, Xu M Y, Liu X Q, Zhang S J, Zhao Q Q, Li Y, et al. A maize jasmonate Zim-domain protein, ZmJAZ14, associates with the JA, ABA, and GA signaling pathways in transgenic Arabidopsis. PLoS One, 2015, 10: e0121824. [33] 黄幸, 丁峰, 彭宏祥, 潘介春, 何新华, 徐炯志, 李琳. 植物WRKY转录因子家族研究进展. 生物技术通报, 2019, 35(12): 129–143. Huang X, Ding F, Peng H X, Pan J C, He X H, Xu J Z, Li L. Research progress on family of plant WRKY transcription factors. Biotechnol Bull, 2019, 35(12): 129–143 (in Chinese with English abstract). [34] 张麒, 陈静, 李俐, 赵明珠, 张美萍, 王义. 植物AP2/ERF转录因子家族的研究进展. 生物技术通报, 2018, 34(8): 1–7. Zhang Q, Chen J, Li L, Zhao M Z, Zhang M P, Wang Y. Research progress on plant AP2/ERF transcription factor family. Biotechnol Bull, 2018, 34(8): 1–7 (in Chinese with English abstract). [35] 赵双, 尤伟忠, 汪溢, 郄红丽. 基于转录组分析枇杷响应干旱胁迫的分子机制. 江苏农业科学, 2024, 52(17): 27–34. Zhao S, You W Z, Wang Y, Qie H L. Analysis of molecular mechanism of Eriobotrya japonica response to drought stress based on transcriptome. Jiangsu Agricultural Sciences, 2024, 52(17): 27–34 (in Chinese). [36] Yang Z, Chi X Y, Guo F F, Jin X Y, Luo H L, Hawar A, Chen Y X, Feng K K, Wang B, Qi J L, et al. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in Sorghum. J Plant Physiol, 2020, 246/247: 153142. [37] Wang X T, Zeng J, Li Y, Rong X L, Sun J T, Sun T, Li M, Wang L Z, Feng Y, Chai R H, et al. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci, 2015, 6: 615. [38] Wang Z Y, Zhao X, Ren Z Z, Abou-Elwafa S F, Pu X Y, Zhu Y F, Dou D D, Su H H, Cheng H Y, Liu Z X, et al. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant Cell Environ, 2022, 45: 312–328. [39] Wang C T, Ru J N, Liu Y W, Yang J F, Li M, Xu Z S, Fu J D. The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis. Int J Mol Sci, 2018, 19: 2580. [40] 吴永波, 郝转芳, 王楠, 宋洁, 周跃恒, 柳波娟, 朱汉勇, 邸宏, 王振华, 李新海. 玉米雄穗发育早期耐旱相关转录因子的发掘. 华北农学报, 2018, 33(4): 1–8. Wu Y B, Hao Z F, Wang N, Song J, Zhou Y H, Liu B J, Zhu H Y, Di H, Wang Z H, Li X H. The identification of drought tolerance-related transcription factors in early developing tassel of maize. Acta Agric Boreali-Sin, 2018, 33(4): 1–8 (in Chinese with English abstract). [41] Filyushin M A, Kochieva E Z, Shchennikova A V. ZmDREB2.9 gene in maize (Zea mays L.): genome-wide identification, characterization, expression, and stress response. Plants, 2022, 11: 3060. [42] Ren X Z, Chen Z Z, Liu Y, Zhang H R, Zhang M, Liu Q, Hong X H, Zhu J K, Gong Z Z. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J, 2010, 63: 417–429. [43] Cheng M C, Hsieh E J, Chen J H, Chen H Y, Lin T P. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiol, 2012, 158: 363–375. [44] Lei L, Pan H, Hu H Y, Fan X W, Wu Z B, Li Y Z. Characterization of ZmPMP3g function in drought tolerance of maize. Sci Rep, 2023, 13: 7375. |
[1] | 方应浩, 周波, 陈茹梅, 杨文竹, 秦慧民. 基于RNA-seq和PER-seq联合分析探究ZmHDZ6表达调控网络[J]. 作物学报, 2025, 51(4): 958-968. |
[2] | 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57. |
[3] | 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835. |
[4] | 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309. |
[5] | 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250. |
[6] | 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432. |
[7] | 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828. |
[8] | 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531. |
[9] | 巩慧玲, 林红霞, 任小丽, 李彤, 王晨霞, 白江平. StvacINV1负调控马铃薯的耐旱性[J]. 作物学报, 2023, 49(11): 3007-3016. |
[10] | 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850. |
[11] | 郭楠楠, 刘天策, 史硕, 胡心亭, 牛亚丹, 李亮. 长链非编码RNA (LncRNA)在印度梨形孢促进大麦根部生长发育中的调控作用[J]. 作物学报, 2022, 48(7): 1625-1634. |
[12] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[13] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[14] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[15] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
|