欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (4): 958-968.doi: 10.3724/SP.J.1006.2025.43055

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于RNA-seq和PER-seq联合分析探究ZmHDZ6表达调控网络

方应浩1(), 周波3(), 陈茹梅2, 杨文竹2,*(), 秦慧民1,*()   

  1. 1工业发酵微生物教育部重点实验室 / 天津市工业微生物重点实验室 / 天津科技大学生物技术学院 / 工业酶国家工程实验室, 天津 300457
    2中国农业科学院生物技术研究所作物功能基因组研究中心, 北京 100081
    3河南省农业科学院粮食作物研究所, 河南郑州 450002
  • 收稿日期:2024-12-01 接受日期:2025-01-23 出版日期:2025-04-12 网络出版日期:2025-02-07
  • 通讯作者: 杨文竹, E-mail: yangwenzhu@caas.cn; 秦慧民, E-mail: huiminqin@tust.edu.cn
  • 作者简介:方应浩, E-mail: 15971341259@163.com;
    周波, E-mail: zb009@126.com第一联系人:

    **同等贡献

  • 基金资助:
    国家自然科学基金项目(32372064)

Integrative analysis of RNA-seq and PER-seq to elucidate regulatory network of ZmHDZ6 expression

FANG Ying-Hao1(), ZHOU Bo3(), CHEN Ru-Mei2, YANG Wen-Zhu2,*(), QIN Hui-Min1,*()   

  1. 1Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education / Tianjin Key Laboratory of Industrial Microbiology / College of Biotechnology, Tianjin University of Science and Technology / National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
    2Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2024-12-01 Accepted:2025-01-23 Published:2025-04-12 Published online:2025-02-07
  • Contact: E-mail: yangwenzhu@caas.cn; E-mail: huiminqin@tust.edu.cn
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(32372064)

摘要:

玉米是需水量较大的作物, 而干旱是制约玉米生产的主要因素。结合前期研究基础和相关研究进展, 发现ZmHDZ6受干旱诱导强烈, 且过表达植株表现出优良的抗旱性能。为探究玉米转录因子ZmHDZ6的下游调控机制, 通过对ZmHDZ6过表达转基因玉米株系进行RNA-seq测序, 对自交系B73原生质体进行PER-seq (protoplast transient expression-based RNA-sequencing)测序, 并进行联合分析。 结果显示,2种测序策略得到的差异表达基因(DEGs)呈现一致性, 功能主要集中在参与氧化还原反应等GO富集分析条目。KEGG分析显示功能都富集在苯并噁唑嗪酮类化合物代谢途径上。此外, 基于RNA-seq的DEGs在氨基酸和核苷酸代谢途径富集, 而基于PER-seq的DEGs还富集在核糖体生物发生代谢途径。因此, 推测ZmHDZ6可能通过调控与氧化还原相关基因和苯并噁唑嗪酮类化合物的代谢进而增强玉米抗旱性。通过进一步在129个Co-DEGs (Common DEGs)的启动子序列扫描HDZIP I家族的DNA结合基序(motif), 将潜在靶基因缩减至16个, 其中8个基因的功能与玉米抗逆紧密相关。本研究利用转录组学数据分析了ZmHDZ6基因的下游表达调控网络, 为进一步解析抗旱机制提供了参考。

关键词: RNA-seq, PER-seq, 转录因子, ZmHDZ6, 靶基因, motif

Abstract:

Maize is a crop with high water demand, and drought is a major factor limiting its productivity. Building on previous findings and related research, we identified that the ZmHDZ6 gene is strongly induced by drought, and transgenic plants overexpressing ZmHDZ6 exhibit enhanced drought resistance. To investigate the downstream regulatory mechanisms of the maize transcription factor ZmHDZ6, RNA-seq was performed on transgenic maize plants overexpressing ZmHDZ6, while PER-seq (protoplast transient expression-based RNA sequencing) was conducted using protoplasts from the B73 inbred line. An integrative analysis of these datasets revealed that the differentially expressed genes (DEGs) identified by both methods showed consistent results in GO analysis, with their functions primarily associated with redox reactions. KEGG pathway analysis further demonstrated consistency in the benzoxazinoid biosynthesis pathway. Notably, RNA-seq DEGs were additionally enriched in amino acid and nucleotide metabolism pathways, while PER-seq DEGs were enriched in ribosome biogenesis pathways. Based on these findings, we propose that ZmHDZ6 enhances drought resistance in maize by regulating genes involved in redox processes and benzoxazinoid metabolism. Furthermore, through an integrative analysis of DNA binding motifs of the HD-ZIP I family and the promoters of 129 common DEGs (Co-DEGs), combined with gene annotation and motif physical location information, we narrowed potential target genes down to 16, of which 8 are closely associated with stress responses in maize. This study provides a detailed analysis of the regulatory network of ZmHDZ6 expression, offering valuable insights into the drought resistance mechanisms mediated by ZmHDZ6 and a reference for further functional studies.

Key words: RNA-seq, PER-seq, transcription factor, ZmHDZ6, target gene, motif

图1

载体构建图谱和转化体相对表达量检测 A: PER-seq载体构建图; B: 过表达载体构建图; C: 转化体表达量检测。EGFP: 增强型绿色荧光蛋白基因; Ter: 终止子; Bar: 抗除草剂基因; Ltp2: 糊粉层特异性表达启动子; DsRed: 红色荧光蛋白基因; UBI: 组成型启动子; 3×Flag: 蛋白标签; WT: 野生型; OE1/4/12: 过表达ZmHDZ6株系。数据使用平均值±标准差表示; 差异显著性分析采用t检验(**: P < 0.01, ****: P < 0.0001)。"

图2

样品相关性分析热图 A: RNA-seq样品相关性分析; B: PER-seq样品相关性分析。OE12-1/2/3: OE12阳性样品; WT-1/2/3: 野生型样品; ZmHDZ6-1/2/3: ZmHDZ6原生质体转化样品; Control-1/2/3: 原生质体转化对照样品。"

图3

差异表达基因火山图 A: RNA-seq差异表达基因火山图; B: PER-seq差异表达基因火山图。Up regulated genes: 上调基因; Down regulated genes: 下调基因; Non-regulated genes: 非差异基因。每个圆点代表一个差异表达基因, x轴表示两组间表达量的倍数变化取Log2的值, y轴表示t检验的P值取log10的值。"

图4

RNA-seq和PER-seq差异表达基因韦恩图 A: 上调基因韦恩图; B: 下调基因韦恩图。"

图5

差异表达基因富集分析 A: RNA-seq差异表达基因GO富集分析条形图; B: RNA-seq差异表达基因KEGG富集通路气泡图; C: PER-seq差异表达基因GO富集分析条形图; D: PER-seq差异表达基因KEGG富集通路气泡图; E: Co-DEGs GO富集分析条形图; F: Co-DEGs KEGG富集通路气泡图。图A、C、E中x轴表示基因的数目, y轴表示数据库中条目注释信息。图B、D、F中x横表示富集因子, y轴表示数据库中通路注释信息, 圆点大小表示基因数目, 颜色表示t检验的P值取log10的值。"

图6

HDZIP I家族motif x轴表示碱基的相对位置, y轴代表碱基出现的频率。"

表1

16个可能的靶基因功能注释"

基因ID
Gene ID
离近端启动子区物理位置
Physical location from proximal promoter region (bp)
描述
Description
结合位点数量
Number of binding sites
相关文献
Reference
Zm00001d029747 266 过氧化物酶64 Peroxidase 64 3 [31]
Zm00001d031717 111 转录因子bHLH28 Transcription factor bHLH28 2 [37]
Zm00001d034836 215 未知Unknown 1
Zm00001d048985 134 At5g01610蛋白Protein At5g01610 2 [39]
Zm00001d034977 292 突变体相关蛋白SEC22 VAMP protein SEC22 1 [40]
Zm00001d020401 284 肉桂醇脱氢酶 Cinnamyl alcohol dehydrogenase 1 [41]
Zm00001d021632 195 LOC103633229 1 [42]
Zm00001d008173 165 第3类分泌型植物过氧化物酶家族蛋白
Class III secretory plant peroxidase family protein
4 [32]
Zm00001d009404 275/229 天冬氨酸-谷氨酸消旋酶家族
Aspartate-glutamate racemase family
5 [43]
Zm00001d046281 286 LOC103638588 1 [44]
Zm00001d047504 151 花青素5,3-葡糖基转移酶
Anthocyanidin 5,3-O-glucosyltransferase
1 [38]
Zm00001d048437 278 钙调蛋白结合蛋白Calmodulin binding protein 1 [45]
Zm00001d023936 256 类CASP蛋白8 CASP-like protein 8 2
Zm00001d025567 212/243 阿拉伯半乳糖蛋白1 Arabinogalactan protein 1 2
Zm00001d026398 267 转录因子TGAL6 Transcription factor TGAL6 3 [33]
Zm00001d023673 278 SWEET13b 2 [34-36]

图7

差异表达基因的qRT-PCR验证 WT: 野生型材料; OE: OE12株系材料。RNA-seq: 公司测序数据; qRT-PCR: 试验数据。Leaf: 以叶片为材料进行数据验证; Potoplast: 以原生质体为材料进行数据验证。数据使用平均值±标准差表示; 差异显著性分析采用t检验(**: P < 0.01, ***: P < 0.001, ****: P < 0.0001)。"

[1] Luo N, Meng Q F, Feng P Y, Qu Z R, Yu Y H, Liu D L, Müller C, Wang P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat Commun, 2023, 14: 2637.
[2] Liu W M, Hou P, Liu G Z, Yang Y S, Guo X X, Ming B, Xie R Z, Wang K R, Liu Y E, Li S K. Contribution of total dry matter and harvest index to maize grain yield: a multisource data analysis. Food Energy Secur, 2020, 9: e256.
[3] Li Y, Guan K Y, Schnitkey G D, DeLucia E, Peng B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob Chang Biol, 2019, 25: 2325-2337.
[4] Blancon J, Buet C, Dubreuil P, Tixier M H, Baret F, Praud S. Maize green leaf area index dynamics: genetic basis of a new secondary trait for grain yield in optimal and drought conditions. Theor Appl Genet, 2024, 137: 68.
doi: 10.1007/s00122-024-04572-6 pmid: 38441678
[5] Lu F Z, Li W C, Peng Y L, Cao Y, Qu J T, Sun F A, Yang Q Q, Lu Y L, Zhang X H, Zheng L J, et al. ZmPP2C26 alternative splicing variants negatively regulate drought tolerance in maize. Front Plant Sci, 2022, 13: 851531.
[6] Liu S X, Wang H W, Qin F. Genetic dissection of drought resistance for trait improvement in crops. Crop J, 2023, 11: 975-985.
doi: 10.1016/j.cj.2023.05.002
[7] He H H, Yang M F, Li S Y, Zhang G Y, Ding Z Y, Zhang L, Shi G Y, Li Y R. Mechanisms and biotechnological applications of transcription factors. Synth Syst Biotechnol, 2023, 8: 565-577.
doi: 10.1016/j.synbio.2023.08.006 pmid: 37691767
[8] Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiol Plant, 2021, 172: 847-868.
doi: 10.1111/ppl.13268 pmid: 33180329
[9] Weidemüller P, Kholmatov M, Petsalaki E, Zaugg J B. Transcription factors: Bridge between cell signaling and gene regulation. Proteomics, 2021, 21: e2000034.
[10] Gong S H, Ding Y F, Hu S S, Ding L H, Chen Z X, Zhu C. The role of HD-Zip class I transcription factors in plant response to abiotic stresses. Physiol Plant, 2019, 167: 516-525.
doi: 10.1111/ppl.12965 pmid: 30851063
[11] Valdés A E, Overnäs E, Johansson H, Rada-Iglesias A, Engström P. The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Mol Biol, 2012, 80: 405-418.
doi: 10.1007/s11103-012-9956-4 pmid: 22968620
[12] Zhang S X, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer A H, Schluepmann H, Liu C M, Ouwerkerk P B F. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol Biol, 2012, 80: 571-585.
[13] Bang S W, Lee D K, Jung H, Chung P J, Kim Y S, Choi Y D, Suh J W, Kim J K. Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance. Plant Biotechnol J, 2019, 17: 118-131.
[14] Mao H D, Yu L J, Li Z J, Liu H, Han R. Molecular evolution and gene expression differences within the HD-Zip transcription factor family of Zea mays L. Genetica, 2016, 144: 243-257.
[15] 郝陆洋, 张晓静, 高晨曦, 张登峰, 李永祥, 李春辉, 宋燕春, 石云素, 王天宇, 刘旭洋, 等. 玉米HD-Zip转录因子基因Zmhdz6的克隆与功能分析. 植物遗传资源学报, 2022, 23: 823-831.
doi: 10.13430/j.cnki.jpgr.20211124001
Hao L Y, Zhang X J, Gao C X, Zhang D F, Li Y X, Li C H, Song Y C, Shi Y S, Wang T Y, Liu X Y, et al. Cloning and functional analysis of HD-zip transcription factor gene Zmhdz6 in maize. J Plant Genet Resour, 2022, 23: 823-831 (in Chinese with English abstract).
[16] Jiao P, Jiang Z Z, Wei X T, Liu S Y, Qu J, Guan S Y, Ma Y Y. Overexpression of the homeobox-leucine zipper protein ATHB-6 improves the drought tolerance of maize (Zea mays L.). Plant Sci, 2022, 316: 111159.
[17] Jiang Y, Su S Z, Chen H, Li S P, Shan X H, Li H, Liu H K, Dong H X, Yuan Y P. Transcriptome analysis of drought-responsive and drought-tolerant mechanisms in maize leaves under drought stress. Physiol Plant, 2023, 175: e13875.
[18] Zhang F, Wu J F, Sade N, Wu S, Egbaria A, Fernie A R, Yan J B, Qin F, Chen W, Brotman Y, et al. Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biol, 2021, 22: 260.
doi: 10.1186/s13059-021-02481-1 pmid: 34488839
[19] Zenda T, Liu S T, Wang X, Liu G, Jin H Y, Dong A Y, Yang Y T, Duan H J. Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines. Int J Mol Sci, 2019, 20: 1268.
[20] 袁钰涵. 玉米黄化突变体yl412的鉴定及YL412基因功能研究. 中国农业科学院硕士学位论文, 北京, 2021.
Yuan Y H. Identification of Maize Yellowing Mutant yl412 and Study on the Function of YL412 Gene. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021 (in Chinese with English abstract).
[21] Luo Y, Zhang M L, Liu Y, Liu J, Li W Q, Chen G S, Peng Y, Jin M, Wei W J, Jian L M, et al. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytol, 2022, 234: 513-526.
[22] Ma S, Yang W Z, Liu X Q, Li S Z, Li Y, Zhu J M, Zhang C Y, Lu X D, Zhou X J, Chen R M. Pentatricopeptide repeat protein CNS1 regulates maize mitochondrial complex III assembly and seed development. Plant Physiol, 2022, 189: 611-627.
[23] Armstrong C L, Petersen W L, Buchholz W G, Bowen B A, Sulc S L. Factors affecting PEG-mediated stable transformation of maize protoplasts. Plant Cell Rep, 1990, 9: 335-339.
doi: 10.1007/BF00232864 pmid: 24226946
[24] Raborn R T, Spitze K, Brendel V P, Lynch M. Promoter architecture and sex-specific gene expression in Daphnia pulex. Genetics, 2016, 204: 593-612.
doi: 10.1534/genetics.116.193334
[25] Tang J, Chen S Y, Jia G F. Detection, regulation, and functions of RNA N6-methyladenosine modification in plants. Plant Commun, 2023, 4: 100546.
[26] Gharabli H, Della G V, Welner D H. The function of UDP-glycosyltransferases in plants and their possible use in crop protection. Biotechnol Adv, 2023, 67: 108182.
[27] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
[28] Sessa G, Carabelli M, Ruberti I, Lucchetti S, Baima S, Morelli G. Identification of distinct families of HD-ZIP proteins in Arabidopsis thaliana. In: Plant Molecular Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. pp 411-426.
[29] Brooks E G, Elorriaga E, Liu Y, Duduit J R, Yuan G L, Tsai C J, Tuskan G A, Ranney T G, Yang X H, Liu W S. Plant promoters and terminators for high-precision bioengineering. Biodes Res, 2023, 5: 0013.
[30] Yasmeen E, Wang J, Riaz M, Zhang L D, Zuo K J. Designing artificial synthetic promoters for accurate, smart, and versatile gene expression in plants. Plant Commun, 2023, 4: 100558.
[31] 丁冬. 低磷胁迫下玉米幼苗根系生理及膜脂代谢分子调控研究. 黑龙江八一农垦大学硕士学位论文, 黑龙江大庆, 2020.
Ding D. Molecular Regulation of Physiology and Membrane Lipid Metabolism in Maize Roots under Low Phosphorus Stress. MS Thesis of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China, 2020 (in Chinese with English abstract).
[32] 何秀静. 西南地区三种胁迫条件下玉米转录组分析及胁迫响应基因功能研究. 四川农业大学博士学位论文, 四川雅安, 2018.
He X J. Transcriptome Analyses of Maize (Zea mays L.) under Three Different Stresses in Southwest China and Functional Characterization of the Candidate Genes. PhD Dissertation of Sichuan Agricultural University, Ya’an, Sichuan, China, 2018 (in Chinese with English abstract).
[33] He R Y, Zheng J J, Chen Y, Pan Z Y, Yang T, Zhou Y, Li X F, Nan X Y, Li Y Z, Cheng M J, et al. QTL-seq and transcriptomic integrative analyses reveal two positively regulated genes that control the low-temperature germination ability of MTP-maize introgression lines. Theor Appl Genet, 2023, 136: 116.
[34] Vinodh Kumar P N, Mallikarjuna M G, Jha S K, Mahato A, Lal S K, K R Y, Lohithaswa H C, Chinnusamy V. Unravelling structural, functional, evolutionary and genetic basis of SWEET transporters regulating abiotic stress tolerance in maize. Int J Biol Macromol, 2023, 229: 539-560.
doi: 10.1016/j.ijbiomac.2022.12.326 pmid: 36603713
[35] Amombo E, Ashilenje D S, Hirich A, Kouisni L, Oukarroum A, Ghoulam C, Meksem K, El Gharous M, Nilahyane A. Insights on the SWEET gene role in soluble sugar accumulation via the CO2 fixation pathway in forage maize under salt stress. J Plant Growth Regul, 2023.
[36] Pinto V B, Vidigal P M P, Dal-Bianco M, Almeida-Silva F, Venancio T M, Viana J M S. Transcriptome-based strategies for identifying aluminum tolerance genes in popcorn (Zea mays L. var.everta). Sci Rep, 2023, 13: 19400.
[37] 郑云霄. 玉米抗倒伏性状综合鉴评及茎秆维管束性状遗传分析. 河北农业大学硕士学位论文, 河北保定, 2021.
Zheng Y X. Comprehensive Identification and Evaluation of Lodging Resistance Traits and Genetic Analysis of Stem Vascular Bundle in Maize. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2021 (in Chinese with English abstract).
[38] 赵欢. 基于Micro-CT的玉米穗位节间维管束表型精准鉴定及全基因组关联分析. 华中农业大学硕士学位论文, 湖北武汉, 2022.
Zhao H. Precise Phenotypic Identification and Genome-Wide Association Analysis of Maize Ear Internode Vascular Bundles Based on Micro-CT. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract).
[39] 孟新超. 玉米染色质重塑蛋白ZmCHB101调控氮响应的分子机制. 东北师范大学博士学位论文, 吉林长春, 2019.
Meng X C. Molecular Mechanism of Chromatin Remodeling Protein Zmchb101 in Nitrate Response in Maize. PhD Dissertation of Northeast Normal University, Changchun, Jilin, China, 2019 (in Chinese with English abstract).
[40] Zhang Y P, Zhang X J, Zhu L J, Wang L X, Zhang H, Zhang X H, Xu S T, Xue J Q. Identification of the maize LEA gene family and its relationship with kernel dehydration. Plants (Basel), 2023, 12: 3674.
[41] Chu Y H, Lee Y S, Gomez-Cano F, Gomez-Cano L, Zhou P, Doseff A I, Springer N, Grotewold E. Molecular mechanisms underlying gene regulatory variation of maize metabolic traits. Plant Cell, 2024, 36: 3709-3728.
[42] 刘永明. Rf4介导的玉米CMS-C育性恢复机制探究及其恢复系鉴定. 四川农业大学博士学位论文, 四川温江, 2019.
Liu Y M. Characterization of the Maize CMS-C Fertility Restoration Mechanism and Its Restorer Lines. PhD Dissertation of Sichuan Agricultural University, Wenjiang, Sichuan, China, 2019 (in Chinese with English abstract).
[43] 罗博文. 结合全基因组关联分析和代谢组学研究玉米苗期低磷响应机制. 四川农业大学博士学位论文, 四川雅安, 2019.
Luo B W. Genome-wide Association Studies and Metabolite Profiling Reveal Response Mechanisms of Phosphorus Deficiency in Maize Seedling. PhD Dissertation of Sichuan Agricultural University, Ya’an, Sichuan, China, 2019 (in Chinese with English abstract).
[44] 陈静. 两个玉米纹枯病病原诱导启动子中核心顺式作用元件的鉴定. 山东农业大学硕士学位论文, 山东泰安, 2016.
Chen J. Identification of Key Cis-Lements from Two Pathogen-Inducible Promoters for Rhizoctonia Solani Causing Maize Banded Leaf and Sheath Blight. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract).
[45] 金思. 玉米全基因组IQD基因的分析及进化研究. 安徽农业大学硕士学位论文, 安徽合肥, 2012.
Jin S. Genome-wide Identification and Evolution Analysis of the IQD Gene Family in Zea mays L. MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2012 (in Chinese with English abstract).
[46] Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet, 2019, 20: 631-656.
doi: 10.1038/s41576-019-0150-2 pmid: 31341269
[47] Liu S T, Zenda T, Li J, Wang Y F, Liu X Y, Duan H J. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. PLoS One, 2020, 15: e0240468.
[48] Li J, Zenda T, Liu S T, Dong A Y, Wang Y F, Liu X Y, Wang N, Duan H J. Integrated transcriptomic and proteomic analyses of low-nitrogen-stress tolerance and function analysis of ZmGST42 gene in maize. Antioxidants (Basel), 2023, 12: 1831.
[49] Deniaud E, Baguet J, Chalard R, Blanquier B, Brinza L, Meunier J, Michallet M C, Laugraud A, Ah-Soon C, Wierinckx A, et al. Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition. PLoS One, 2009, 4: e7035.
[50] Nosrati N, Kapoor N R, Kumar V. Combinatorial action of transcription factors orchestrates cell cycle‐dependent expression of the ribosomal protein genes and ribosome biogenesis. FEBS J, 2014, 281: 2339-2352.
doi: 10.1111/febs.12786 pmid: 24646001
[51] Domcke S, Bardet A F, Adrian Ginno P, Hartl D, Burger L, Schübeler D. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature, 2015, 528: 575-579.
[52] Guan X L, Song M, Lu J W, Yang H, Li X, Liu W B, Zhang Y, Miao W G, Li Z G, Lin C H. The transcription factor CsAtf1 negatively regulates the cytochrome P450 gene CsCyp51G1 to increase fludioxonil sensitivity in Colletotrichum siamense. J Fungi, 2022, 8: 1032.
[53] Himmelbach A, Hoffmann T, Leube M, Höhener B, Grill E. Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J, 2002, 21: 3029-3038.
pmid: 12065416
[54] Jiao P, Jiang Z Z, Miao M, Wei X T, Wang C L, Liu S Y, Guan S Y, Ma Y Y. Zmhdz9, an HD-Zip transcription factor, promotes drought stress resistance in maize by modulating ABA and lignin accumulation. Int J Biol Macromol, 2024, 258: 128849.
[1] 潘炬忠, 韦萍, 朱德平, 邵胜雪, 陈珊珊, 韦雅倩, 高维维. 水稻转录因子OsERF104的克隆和功能研究[J]. 作物学报, 2025, 51(4): 900-913.
[2] 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887.
[3] 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析[J]. 作物学报, 2025, 51(1): 247-259.
[4] 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57.
[5] 郭飞翔, 李春霞, 周爽, 郭彬彬, 张均, 马超. 绿豆R2R3-MYB转录因子家族鉴定及其类黄酮合成调控基因的筛选[J]. 作物学报, 2025, 51(1): 117-133.
[6] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[7] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[8] 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309.
[9] 殷祥贞, 赵健鑫, 郝翠翠, 潘丽娟, 陈娜, 许静, 姜骁, 赵旭红, 王恩琪, 曹欢, 禹山林, 迟晓元. 花生转录因子基因AhWRI1的克隆及表达分析[J]. 作物学报, 2024, 50(12): 3155-3164.
[10] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[11] 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137.
[12] 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148.
[13] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[14] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[15] 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!