欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (10): 1644-1653.

• 研究论文 • 上一篇    下一篇

优质面包小麦品种济南17和豫麦34灌浆期高温胁迫差异表达基因的分离

李浩1,2 , 张平平1,3, 查向东2 , 夏先春1, 何中虎1,4,*   

  1. (1 中国农业科学院作物科学研究所/国家小麦改良中心/国家农作物基因资源与基因改良重大科学工程,北京100081;2 安徽大学生命科学学院/安徽省生态工程与生物技术重点实验室,安徽合肥230039;3 华中农业大学植物科技学院,湖北武汉430070;4 国际玉米小麦改良中心中国办事处,北京100081)
  • 收稿日期:2006-12-28 修回日期:1900-01-01 出版日期:2007-10-12 网络出版日期:2007-10-12
  • 通讯作者: 何中虎

Isolation of Differentially Expressed Genes from Wheat Cultivars Jinan 17 and Yumai 34 with Good Bread Quality under Heat Stress during Grain Filling Stage

LI Hao 1,2, ZHANG Ping-Ping 1,3, ZHA Xiang-Dong 2, XIA Xian-Chun 1, HE Zhong-Hu 1,4,*   

  1. 1 Institute of Crop Sciences, National Wheat Improvement Center/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081; 2 School of Life Sciences, Anhui University/Anhui Provincial Key Laboratory of Eco-engineering and Bio-technique, Hefei 230039, Anhui; 3 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei; 4 CIMMYT China Office, Beijing 100081, China
  • Received:2006-12-28 Revised:1900-01-01 Published:2007-10-12 Published online:2007-10-12
  • Contact: HE Zhong-Hu1

摘要:

选用品质相对不稳定的小麦品种济南17和品质较稳定的品种豫麦34,于开花后15~18 d(灌浆中期)及30~33 d(灌浆后期)分别进行连续3 d的高温胁迫处理(昼夜温度为38℃,25℃)。提取籽粒总RNA,通过cDNA-AFLP分析获得差异条带。回收差异条带,再经过克隆、测序、BLAST比对,济南17、豫麦34分别获得85个和99个高温胁迫下差异表达基因片段的序列。经过反向Northern杂交验证后,济南17获得25个信号明显的序列,其中22个来自热诱导表达的基因,主要与小麦的胁迫响应基因、热激蛋白等同源;豫麦34获得31个信号明显的序列,其中25个来自热抑制表达的基因,主要与乙烯合成酶、吡咯啉-5-羧酸合成酶等同源。说明高温胁迫总体上诱导品质不稳定品种的基因表达,而抑制品质稳定品种的基因表达。济南17的序列有15个来自灌浆中期样本、10个来自灌浆后期样本,豫麦34的序列则分别有29个来自灌浆中期样本、2个来自灌浆后期样本,说明高温胁迫对灌浆中期基因表达的影响比灌浆后期显著,在品质稳定品种中则比品质不稳定品种中更为明显。2个品种在高温胁迫下的基因表达模式存在显著差异,济南17诱导表达胁迫响应基因,豫麦34抑制表达乙烯合成酶和吡咯啉-5-羧酸合成酶及胁迫响应基因,这可能是二者品质稳定性不同的重要原因。

关键词: 普通小麦, 灌浆期, 高温胁迫, cDNA-AFLP, 基因表达, 品质稳定性

Abstract:

Studies of gene expression patterns under heat stress during grain filling stage will provide important information for breeding wheat cultivars with high quality. In the present study, two wheat cultivars, Jinan 17 and Yumai 34 with different quality stability under various environments, were used to in the influence of high temperature on gene expression. The wheat plants were exposed to high temperature (38℃/25℃ day/night) for three days in the middle (from 15 to 18 days post-anthesis) and late stage (from 30 to 33 days post-anthesis) of grain filling in a climate chamber. Spikelets in middle of heads were harvested, and RNA of kernels was extracted with a combined technique of cold phenolic and Trizol single-step methods. cDNA was obtained by the reverse transcription of total RNA, and differential bands were detected subsequently in cDNA-AFLP analysis. In total, 410 and 316 differential bands were detected from Jinan 17 and Yumai 34, respectively. The differential fragments were cloned, sequenced and blasted in NCBI, and 85 and 99 positive fragments of differentially expressed genes under heat stress were obtained from Jinan 17 and Yumai 34, respectively. After the positive fragments were validated by reverse Northern blotting, 25 positive fragments isolated from Jinan 17 showed intense signal, and 22 of them were induced under heat stress, which were notablely homologous to stress response genes and heat shock protein of wheat. Meanwhile, 31 positive fragments showed intense signal were observed from Yumai 34, and 25 of them were suppressed, which were notablely homologous to stress response genes, ethylene forming enzyme, pyrroline-5-carboxylate synthetase. The rusults indicated that gene expression was more induced under heat stress in Jinan17, whereas suppressed more in Yumai 34, which might lead to differences in heat tolerance and quality stability. Five fragments from Jinan 17, and two fragments from Yumai 34 did not have any homology sequences in the BLAST analysis, while other fragments have homology protein or nucleic acid sequences in wheat or other crops. Two fragments induced in response to heat stress were notablely homologous to the storage protein genes, which might induce the expression of transcripts related to storage protein under heat stress. Fifteen differential fragments were detected from medium stage of grain filling in Jinan 17, whereas those from late stage were 10, while 29 and 2 differential fragments in Yumai 34 were observed in medium and late stages, respectively. This indicated that gene expression was more significantly affected by heat stress in medium stage than in late stage of grain filling, especially in Yumai 34. The difference of gene expression patterns between two wheat cultivars were observed, stress response genes were induced in Jinan 17, ethylene forming enzyme and pyrroline-5-carboxylate synthetase as well as stress response genes were suppressed in Yumai 34, which may result in the different responses in heat tolerance and quality stability. The identification and characterization of heat stress responsive genes in wheat may provide a molecular biological understanding of gene expression patterns and regulation involved in the heat stress in wheat.

Key words: Common wheat (Triticum aestivum L.), Grain filling period, Heat stress, cDNA-AFLP, Gene expression, Quality stability

[1] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[2] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[3] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[4] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[5] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[6] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[7] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[8] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[9] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[10] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[11] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[12] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[13] 刘震宇,王桂霞,李丽楠,蔡泽洲,梁潘潘,吴莘玲,张祥,陈德华. 高温胁迫终止后Bt棉蕾杀虫蛋白的恢复特征及相关生理机制[J]. 作物学报, 2020, 46(3): 440-447.
[14] 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516.
[15] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!