欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (06): 861-866.

• 研究论文 • 上一篇    下一篇

土壤水分对冬小麦生长后期光能利用及水分利用效率的影响

房全孝1,2;陈雨海2; 李全起2;于舜章2;罗毅1;于强1;欧阳竹1   

  1. 1.中国科学院地理科学与资源研究所,北京100101;2.山东农业大学,山东泰安 271018
  • 收稿日期:2005-05-26 修回日期:1900-01-01 出版日期:2006-06-12 网络出版日期:2006-06-12
  • 通讯作者: 陈雨海

Effects of Soil Moisture on Radiation Utilization during Late Growth Stages and Water Use Efficiency of Winter Wheat

FANG Quan-Xiao1 2,CHEN Yu-Hai2,LI Quan-Qi2,YU Shun-Zhang2,LUO Yi1,YU Qiang1 , OU-YANG Zhu1   

  1. 1 .Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Agricultural Sciences, Beijing 100101, China; 2. Agronomy College of Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2005-05-26 Revised:1900-01-01 Published:2006-06-12 Published online:2006-06-12
  • Contact: CHEN Yu-Hai

摘要:

通过控制不同土壤水分条件形成不同的小麦(Triticum aestivum L.)群体结构,测定了抽穗到成熟期间小麦冠层光合有效辐射(PAR)截获及垂直分布、干物质积累和产量。研究表明,不同处理小麦冠层对PAR的截获量差异较小(小于15.7%),但冠层上部(60~80 cm)的PAR截获量和生长后期PAR转化效率差异明显(100.7%和63.7%),与产量和光能利用效率变化一致,可见土壤水分是通过改变小麦群体内PAR垂直分布及PAR转化效率对作物产量和光能利用效率产生影响。抽穗到成熟期间维持小麦冠层上部PAR截获率在50%左右是实现高产的重要保证。随着土壤水分改善,冬小麦光能利用率和产量持续增加,但水分利用效率却先于二者提前降低,说明改善水分利用效率是提高华北地区农业气候资源利用效率的关键。在底墒充足的条件下,分别在拔节和挑旗期灌水60 mm可获得较高的光能和水分利用效率及经济产量

关键词: 土壤水分, 冬小麦, 冠层结构, 光能和水分利用效率

Abstract:

Water stress is a frequent and critical limit to wheat (Triticum aestivum L.) production in the North China Plain. It has been shown that photosynthetic active radiation (PAR) has close relation to crop production, and water stress affects the biosynthetic procedure remarkably. However, its mechanism is still not clear. An experiment was conducted at Yucheng ecological station in Shandong Province to investigate the interception and conversion efficiencies of PAR in the canopy from heading to maturity stages, and water use efficiency (WUE) of winter wheat at different soil moisture levels. The relationship between soil moisture level and PAR vertical distribution in wheat canopy, and its influences on grain yield, PAR use efficiency and WUE were evaluated. Different supplemental irrigation amounts from 0 to 180 mm and timings from jointing to grain filling stages were designed to attain various soil moisture levels, which resulted in different wheat populations and canopy structures. These soil moisture levels showed substantial influences on PAR interception and distributions in canopy from heading to maturity stages, and subsequent PAR and water use efficiencies. No great difference (less than 15.7%) in PAR intercepted by the wheat canopies was found between these soil moisture treatments during this period. While great differences in PAR intercepted by the top layer of the canopy (60–80 cm) (100.7%) and in PAR conversion efficiency (63.7%) were found between these treatments (Table 4 and Fig.4). This result was mainly caused by the changes in the vertical distributions of leaf area index (Fig.3) and in leaf photosynthesis capability caused by the different soil moisture levels. Maintaining about 50% PAR rate intercepted by the top canopy layer (60–80 cm) from heading to grain filling stages is very important for obtaining high grain yield and PAR use efficiency for winter wheat. With soil moisture improving, the PAR use efficiency during the late growth stages and grain yield were increased, but WUE decreased prior to the grain yield and PAR use efficiency (Fig.5), which indicated that improving WUE was essential to increasing other natural resources use efficiency in wheat growing season in the North China Plain. In current conditions with well initial soil moisture, two supplemental irrigations with 60 mm at jointing and booting stages could obtain high grain yield and WUE, and additional supplemental irrigations would not increase grain yield greatly but decrease WUE of winter wheat.

Key words: Soil moisture, Winter wheat, Canopy structure, PAR and water use efficiency

中图分类号: 

  • S512
[1] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[4] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[5] 颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距与氮肥或甲哌鎓化控对棉花冠层结构、温度和相对湿度的影响[J]. 作物学报, 2021, 47(9): 1654-1665.
[6] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[7] 吴春花, 普雪可, 周永瑾, 勉有明, 苗芳芳, 李荣. 宁南旱区沟垄集雨结合覆盖对土壤水热肥与马铃薯产量的影响[J]. 作物学报, 2021, 47(11): 2208-2219.
[8] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[9] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[10] 张绪成, 马一凡, 于显枫, 侯慧芝, 王红丽, 方彦杰, 张国平, 雷康宁. 旋耕深度对西北黄土高原旱作区土壤水分特性和马铃薯产量的影响[J]. 作物学报, 2021, 47(1): 138-148.
[11] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[12] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[13] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[14] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
[15] 吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟. 冬小麦生物量及氮积累量的植被指数动态模型研究[J]. 作物学报, 2019, 45(8): 1238-1249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!