欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (04): 598-604.doi: 10.3724/SP.J.1006.2008.00598

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个与小麦雄性不育育性转换相关的MADS-box转录因子基因

周琳璘1;宋国琦1;李红燕1;胡银岗1,2,3,*;何蓓如1   

  1. 1西北农林科技大学农学院, 陕西杨凌 712100; 2国家小麦改良中心杨凌分中心, 陕西杨凌712100; 3陕西省农业分子生物学重点实验室, 陕西杨凌 712100
  • 收稿日期:2007-09-29 修回日期:1900-01-01 出版日期:2008-04-12 网络出版日期:2008-04-12
  • 通讯作者: 胡银岗

A MADS-Box Transcription Factor Related to Fertility Conversion in Male Sterile Wheat Lines

ZHOU Lin-Lin1,SONG Guo-Qi1,LI Hong-Yan1,HU Yin-Gang123*,HE Bei-Ru1   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi; 2 Yangling Branch of China National Wheat Improvement Centre,
    Yangling 712100, Shaanxi; 3 Key Laboratory of Molecular Biology for Agriculture of Shaanxi Province, Yangling 712100, Shaanxi, China
  • Received:2007-09-29 Revised:1900-01-01 Published:2008-04-12 Published online:2008-04-12
  • Contact: HU Yin-Gang

摘要: 为了揭示YS型小麦温敏雄性不育育性转换的基础, 构建了该类型不育系A3017的不育和可育幼穗正、反杂交的两个SSH-cDNA文库。经文库比较, 在不育文库中筛选出一个与MADS-box基因同源的EST序列(GenBank登录号: 36925702)。以该EST序列的同源性比对和拼接结果为依据, 设计引物对该基因在可育和不育幼穗中的表达进行了RT-PCR分析, 结果表明, 该基因在不育幼穗中表达量较高, 可育幼穗中表达量很低。对不育幼穗中扩增出的cDNA片段进行克隆测序, 获得了666 bp的cDNA序列。序列分析表明, 该片段编码160个氨基酸, 具有MADS-box转录因子的典型结构域K-box, 被定名为TaMS-MADSbox, 与一个小麦MADS box转录因子基因WAG的氨基酸序列的相似性为94%。进一步以3种不同类型的小麦雄性不育系和保持系的幼穗cDNA为材料, 利用半定量RT-PCR对该基因的表达模式分析发现也存在类似差异, 该基因在不育系幼穗中表达量较高, 而保持系幼穗中表达量较低。以上分析表明, 该MADS-box转录因子基因的表达与小麦雄性不育系的育性转化相关, 表达量高时表现雄性不育, 表达量低时表现雄性可育。

关键词: 普通小麦, 温敏雄性不育, 育性转换, MADS-box转录因子, 表达分析

Abstract: Male sterility is one of the major characteristics to be used in heterosis utilization of crops, in which thermo-sensitive or photo-sensitive male sterility is very important for two-line hybridization due to the conversion of their male fertility under special weather conditions. YS type thermo-sensitive male sterile wheat (Triticum astivum L.) lines are applicable for heterosis use in the major wheat production areas of northern China. To investigate the molecular basis of male fertility conversion of YS type thermo-sensitive male sterile wheat lines, we constructed the sterile and fertile suppression subtractive hybridization (SSH) cDNA libraries respectively, using the cDNA of the male sterile or fertile young spikes from the same individual of one YS type thermo-sensitive male sterile wheat line A3017 under controlled male sterile or fertile conditions. Comparing the EST sequences between the two cDNA libraries, an EST (GenBank accession number: 36925702) highly similar to MADS box transcription factor gene was selected from the sterile SSH-cDNA library and used as the probe to search the dbEST. A pair of primers was designed based on the aligned sequence of highly homological EST sequences, and used to detect the expression difference of this gene between male sterile and fertile spikes via Reverse Transcriptase PCR (RT-PCR). The results showed that the expression of this gene in male sterile spikes was much higher than that in fertile spikes. Then the RT-PCR fragment amplified from the male sterile spikes was cloned and sequenced, a cDNA sequence with 666 bp and encoding 160 amino acids was obtained. The cDNA fragment contained the typical K-box domain of MADS-box, and designated as TaMS-MADSbox. The deduced amino acids were 94% similar to WAG (BAC22939), an MADS box transcription factor of wheat. The expression profiles of this MADS-box transcription factor gene in the male-sterile lines and their maintainers of three types of male sterile wheat lines were further analyzed via semi-quantitative RT-PCR. The result showed similar patterns that the expression of the MADS-box transcription factor gene in male-sterile lines was much higher than that in maintainers. It suggests that the expression of TaMS-MADSbox is related to the fertility conversion of male-sterile lines. The spikes are male-sterile under high-level expression of TaMS-MADSbox, while fertile under the low-level expression.

Key words: Common wheat, Thermo-sensitive male-sterility, Fertility conversion, MADS-box transcription factor, Gene expression analysis

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[4] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[5] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[6] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[7] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[8] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[9] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[10] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[11] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[12] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[13] 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2aGmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032.
[14] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[15] 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!