欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (09): 1574-1580.doi: 10.3724/SP.J.1006.2008.01574

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花6个小分子质量热激蛋白基因的序列、表达与定位

贺亚军;郭旺珍;张天真*   

  1. 南京农业大学棉花研究所/作物遗传与种质创新国家重点实验室, 江苏南京210095
  • 收稿日期:2007-12-19 修回日期:1900-01-01 出版日期:2008-09-12 网络出版日期:2008-09-12
  • 通讯作者: 张天真

Cloning, Expression, and Mapping of Six Low-Molecular-Weight Heat- Shock Protein Genes in Cotton

HE Ya-Jun,GUO Wang-Zhen,ZHANG Tian-Zhen*   

  1. National Key Laboratory of Crop Genetics and Germplasm Enhancement / Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2007-12-19 Revised:1900-01-01 Published:2008-09-12 Published online:2008-09-12
  • Contact: ZHANG Tian-Zhen

摘要: 利用棉花纤维cDNA文库, 分离到6个小分子质量的热激蛋白基因。序列结构分析发现, 它们分别属于3种不同类型的小热激蛋白。RT-PCR分析表明, 它们在棉花体内具有不同的转录表达特征, 可能行使不同的功能, 它们的转录与棉花特定的发育阶段相关, 线粒体小热激蛋白和细胞质I类小热激蛋白基因受纤维启始和分化的调控, 而细胞质II类小热激蛋白与棉花叶片的生长发育相关。利用本实验室的四倍体棉花遗传图谱, 对这6个小热激蛋白基因进行定位, 其中3个被定位在A4、D8和A6染色体上。

关键词: 棉花, 小分子质量热激蛋白, 表达, 基因定位

Abstract: Heat-shock proteins (HSPs), known as stress proteins, are created when cells are exposed to elevated temperatures, or to other kinds of environmental stress. Although HSPs were first characterized because their expression increased in response to elevated temperature, some of them are found in normal, nonstressed cells. HSPs have many biochemical functions in cell metabolism during plant developmental process. The objective of the study was to isolate low-molecular-weight HSP genes, further put a foundation to illustrate them function in cotton fiber developmental stages. Six low-molecular-weight HSP genes were isolated from cotton fiber cDNA library. Sequence analysis showed that they belong to three different types of low-molecular-weight HSP. RT-PCR analysis revealed that they exhibit different transcripional profile in cotton. The mitochondrial and cytoplasmic I HSP genes were regulateded by the fiber initiation; however, cytoplasmic II HSP genes were more closely correlated with the growth and development of cotton leaf. Using genetic map of the tetraploid cotton constructed by our laboratory, three of these genes, LMWHSP1, LMWHSP2, and LMWHSP3, were mapped on the cotton chromosomes A4, D8, and A6, respectively.

Key words: Cotton, Low-molecular-weight heat-shock protein, Expression, Gene mapping

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[5] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[10] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[11] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[12] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[15] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!