欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (4): 640-646.doi: 10.3724/SP.J.1006.2009.00640

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

Rs-AFP2基因小麦的分子分析及其纹枯病抗性

路妍12,张增艳1*,任丽娟3,刘宝业1,廖勇14,徐惠君1,杜丽璞1,马鸿翔3,任正隆4,井金学2*,辛志勇1   

  1. 1中国农业科学院作物科学研究所/农作物基因资源与基因改良国家重大科学工程,北京100081;2西北农林科技大学植物保护学院,陕西杨凌712100;3江苏农业科学院生物技术研究所,江苏南京210014;4四川农业大学农学院,四川雅安625000
  • 收稿日期:2008-10-16 修回日期:2008-12-04 出版日期:2009-04-12 网络出版日期:2009-02-13
  • 通讯作者: 张增艳
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2008ZX08002-001)资助。

Molecular Analyses on Rs-AFP2 Transgenic Wheat Plants and Their Resistance to Rhizoctonia cerealis

LU Yan12,ZHANG Zeng-Yan1*,REN Li-Juan3,LIU Bao-Ye1,LIAO Yong14,XU Hui-Jun1,DU Li-Pu1,MA Hong-Xiang3,REN Zheng-Long4,JING Jin-Xue2*,XIN Zhi-Yong1   

  1. 1National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, chinese Academy of Agricultural Sciences,Beijing 100081,China;2College of Plant Protection,Northwest A&F University,Yangling 712100,China;3Biotechnology Research Institute,Jiangsu Academy of Aaricultural Sciences,Nanjing 210014,China;4College of Agronomy,Sichuan Agricultural University,Ya'an 625000,China
  • Received:2008-10-16 Revised:2008-12-04 Published:2009-04-12 Published online:2009-02-13
  • Contact: ZHANG Zeng-Yan

摘要:

Rs-AFP2属于r-硫堇类抗菌肽,主要通过形成离子通道直接破坏细胞来杀灭病原菌。本研究通过基因枪介导法结合对目标基因的分子检测,证明已将外源Rs-AFP2基因转入小麦推广品种扬麦12中。通过逐株抗纹枯病接种鉴定、PCRPCR-Southern blotSouthern blot RT-PCR/荧光定量RT-PCR(Q-RT-PCR)分析,对转Rs-AFP2基因小麦T1T4代植株跟踪检测。结果表明,Rs-AFP2在转基因小麦中能够稳定遗传,以单拷贝整合到小麦基因组中,遗传方式符合孟德尔遗传规律,并能在转录水平上表达。对转Rs-AFP2基因小麦的抗病性、主要农艺性状以及Rs-AFP2表达活性分析结果表明,与受体扬麦12相比,Rs-AFP2表达活性高的转基因小麦植株对纹枯病抗性有明显提高,其抗病性可以遗传,而主要农艺性状没有明显差异,证明可以利用Rs-AFP2基因和基因工程途径创制抗纹枯病小麦新种质。

关键词: 抗菌肽, Rs-AFP2, 转基因小麦, 基因表达, 纹枯病抗性

Abstract:

In this study, the gene encoding Rs-AFP2, a small cyteine-rich antifungal protein from radish, was evidenced to be transformed into a wheat (Triticum aestivum L.) cultivar Yangmai 12 via bombardment of biolistic particle and PCR detection. To evaluate if expression of Rs-AFP2 enhances the transgenic wheat resistance to Rhizoctonia cerealis, a major pathogen of wheat sharp eyespot, the transgenic wheat plants from T1 to T4 generations were subjected to R. cerealis inoculation and the disease resistance rating, and PCR, PCR-Southern, Southern blotting, and RT-PCR/Q-RT-PCR analyses for the Rs-AFP2 transgene. Results showed that Rs-AFP2 gene was integrated as a single copy into the susceptible receptor wheat cultivar Yangmai 12, inherited from T1 to T4, and expressed in the wheat background. The transgenic wheat plants expressing Rs-AFP2 showed enhanced resistance to R. cerealis and unchanged agronomic traits compared with nontransgenic Yangmai 12. In the transgenic wheat plants, the express level of Rs-AFP2 was associated with the disease resistance degree. These results suggested that Rs-AFP2 gene can be useful for improving wheat resistance to R. cerealis.

Key words: Antimicrobial peptides, Rs-AFP2, Transgenic wheat, Gene expression, Resistance to Rhizoctonia cerealis

[1] Chen Y-X(陈延熙), Tang W-H(唐文华), Zhang D-H(张敦华), Jian X-Y(简小鹰). A preliminary study on etiology of sharp eyespot of wheat in China. Acta Phytophylacica Sin (植物保护学报), 1986, 13(1): 39–44 (in Chinese with English abstract)
[2] Shi J-R(史建荣),Wang Y-Z(王裕中), Shen S-W(沈素文), Chen H-G(陈怀谷). Pathogenicity of rhizoctonia cerealis to wheat in Jiangsu Province. Jiangsu J Agric Sci(江苏农业学报), 1997, 13(3): 188–190 (in Chinese with English abstract)
[3] Zhao M-Q(赵美琦), Wei K-F (魏开锋), Bi K-Z(毕可政). Studies on the epidemic prediction of wheat sharp eyespot. Acta Phytophylacica Sin (植物保护学报), 1997, 24(4): 303–308 (in Chinese with English abstract)
[4] WangY-Z(王裕中). Occurrence of wheat sharp eyespot and its controlling. Plant Prot Technol Extension (植保技术与推广), 2001, 21(8): 39–41 (in Chinese)
[5] Theis T, Stahl U. Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci, 2004, 61: 437–455
[6] Gao A G, Hakimi S M, Mittanck C A, Wu Y N, Woerner B M, Stark D M, Shah D M, Hong L J, Rommens C M T. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol, 2000, 18: 1307–1310
[7] Anuradha T S, Divya K, Jami S K, Kirti P B. Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep, 2008, 8: 1007–1017
[8] Shu Q-F (舒琼芳), Sun Y-R(孙勇如). Strategies and advances in antifungi genetic engineering of plant. Acta Bot Sin (植物学报), 1997, 39: 91–96 (in Chinese with English abstract)
[9] Mackintosh C A, Lewis J, Radmer L E, Shin S, Heinen S J, Smith L A, Wyckoff M N, Dill-Macky R, Evans C K, Kravchenko S, Baldridge G D, Zeyen R J, Muehlbauer G J. Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep, 2007, 26: 479–488
[10] Margareta M, Iréne K, Ingrid H, Erland L, Tomas B. Stability of transgene integration and expression insubsequent generations of doubled haploid oilseed rape transformed with chitinase and β-1,3-glucanase genes in a double-gene construct. Plant Cell Rep, 2005, 25: 942–952
[11] Nordeen R O, Dwens L D. Introduction and transcription of an antibacterial cecropin gene in tobacco plants. Plant Physiol, 1992, 99: 47–52
[12] Jia S-R(贾士荣), Qu X-M(屈贤铭), Feng L-X(冯兰香), Tang T(唐惕), Tang Y-X(唐益雄), Liu K(刘坤), Zhao Y-L(赵艳丽), Bai Y-Y(白永延), Cai M-Y(蔡敏莺). Development of potato clones with enhanced resistance to bacterial wilt by introducing antibacterial peptide gene. Sci Agric Sin (中国农业科学), 1998, 31(3): 5–12 (in Chinese with English abstract)
[13] Huang D-N(黄大年), Zhu B(朱冰), Yang W(杨炜), Xue R(薛锐), Xiao H(肖晗), Tian W-Z(田文忠), Li L-C李良材), Dai S-H(戴顺洪). Development and identification of antibact han erial cecropin B transgenic rice. Sci China (Ser C)(中国科学·C辑), 1997, 27(1): 55–62
[14] Almasia N I, Bazzini A A, Hopp H E, Vazquez-Rovere C. Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol Plant Plantpthol, 2008, 9: 329–338
[15] Terras F R G, Schoofs H M E, De Bolle M F C, Leuven F V, Rees S B,Vanderleyden J,Cammue B P A, Broekaert W F. Analysis of two novel classes of antifungal proteins from radish (Raphanus sativus) seed. J Biol Chem, 1992, 267: 15301–15309
[16] Terras F R G, Goderis I J, Leuven F V, Vanderleyden J, Cammue B P A. Broekaert W F. In vitro antifungal activity of a radish (Raphanus sativus) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol, 1992, 100: 1055–1058
[17] Terras F R G, Eggermont K, Kovaleva V, Raikhel N V, Osborn R W, Kester A, Rees S B, Torrekemd S, Leuven F V, Vanderleyden J, Cammue B P A, Broekaert W F. Small cyteine-rich antifungal proteins from radish: their role in host defense. Plant Cell, 1995, 7: 573–588
[18] Liao Y(廖勇), Zhang Z-Y(张增艳), Xu H-J(徐惠君), Du L-P(杜丽璞), Yao W-L(姚乌兰), Xin Z-Y(辛志勇), Ren Z-L(任正隆). Transferring of an antifungal protein gene (Rs-AFP2) of radish into wheat mediated with biolistic particle. J Triticeae Crops (麦类作物学报), 2006, 26(4): 15–19 (in Chinese with English abstract)
[19] Sharp P J, Kries M, Shewry P R, Gale M D. Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet, 1988, 75: 286–290
[20] Zhang Z-Y(张增艳), Xu J-S(许景升), Liu Y-G(刘耀光), Wang X-P(王晓萍), Lin Z-S(林志珊), Xin Z-Y(辛志勇). Isolation of resistance gene candidates by a resistance gene analog of Thinopyrum intermedium andpooled-PCR. Acta Agron Sin (作物学报), 2004, 30(3): 189–195 (in Chinese with English abstract)
[21] Cai S-B(蔡士宾), Ren L-J(任丽娟), Yan W(颜伟), Wu J-Z(吴纪中), Chen H-G(陈怀谷), Wu X-Y(吴小有), Zhang X-Y(张仙义). Germplasm development and mapping of resistance to sharp eyespot (Rhizoctonia cerealis) in wheat. Sci Agric Sin (中国农业科学), 2006, 39(5): 928–934 (in Chinese with English abstract)
[22] Huo N-X(霍纳新). QTL Analysis of Resistance to Diseases Caused by Rhizoctonia Cerealis & Blumeria Graminis. PhD Dissertation of Chinese Academy of Agricultural Sciences, 2002 (in Chinese with English abstract)
[23] Spelbrink R G, Dilmac N, Allen A, Smith T J, Shah D M, Hockerman G H. Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol, 2004, 135: 2055–2067
[24] Wang G-L(王关林), Fang H-J(方宏筠), Wang H-X(王火旭), Li H-Y(李洪艳), Wei Y-T.(魏毓堂). Pathogen-resistant transgenic plant of Brassica pekinensis by transferring antibacterial peptide gene and its genetic stability. Acta Bot Sin (植物学报), 2002, 44(8): 951–955 (in Chinese with English abstract)
[25] Oard S V, Enright F M. Expression of the antimicrobial peptides in plants to control phytopathogenic bacteria and fungi. Plant Cell Rep, 2006, 25: 561–572
[26] Osusky M, Osuska L, Hancock R E, Kay W W, Misra S. Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res, 2004, 13: 181–190
[27] Rajasekaran K, Cary J W, Jaynes J M, Cleveland T E. Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnol J, 2005, 3: 545–554
[28] Wang S-C(王守才), Wang G-Y(王国英), Ding Q-X(丁群星), Zhang H(张宏), Xie Y-J(谢友菊), Dai J-R(戴景瑞). Studies of transgene segregation and integration in maize. Acta Genet Sin (遗传学报), 1999, 26(3): 254–261 (in Chinese with English abstract)
[29] Hua Z-H(华志华), Zhu X-F(朱雪峰), Wu M-G(吴明国), Yu Y-C(于彦春), Zhao Y(赵艳), Gao Z-Y(高振宇), Yan M-X(颜美仙), Qian Q(钱前), Huang D-N(黄大年). Inheritance of exo-genes integrated into the rice genomes. Acta Agron Sin (作物学报), 2003, 29(1): 44–48 (in Chinese with English abstract)
[1] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[2] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[3] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[4] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[5] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[6] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[7] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[8] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[9] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[10] 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516.
[11] 靳舒荣,王艳玫,常悦,王月华,李加纳,倪郁. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报, 2019, 45(8): 1279-1285.
[12] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[13] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
[14] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[15] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!