作物学报 ›› 2009, Vol. 35 ›› Issue (11): 1949-1957.doi: 10.3724/SP.J.1006.2009.01949
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
王玉华1,吴忠义2,张秀海2,王永勤2,黄丛林2,*,贾敬芬1
WANG Yu-Hua1,WU Zhong-Yi2,ZHANG Xiu-Hai2,WANG Yong-Qin2,HUANG Cong-Lin2,*,JIA JIng-Fen1
摘要:
中长链羟基脂肪酸聚酯(medium-chain-length-PHAs, mcl-PHAs) 属于微生物聚酯。羟酰-CoA-ACP-转移酶和II型PHA合酶是mcl-PHAs生物合成途径中的两个关键酶。将编码羟酰-CoA-ACP-转移酶的基因phaG与水稻叶绿体psbA基因的启动子和终止子连接构建表达盒RpsbA-pro-phaG-RpsbA-ter,将II型PHA合酶的基因phaC与水稻叶绿体16S rRNA基因的强启动子Prrn及rbcL基因的终止子连接构建表达盒prrn-phaC-RrbcL-ter,连同壮观霉素抗性基因aadA表达盒prrn-aadA-TpsbA-ter一起克隆进烟草叶绿体基因组同源片段rbcL和accD之间,得到烟草叶绿体表达载体pTGC。用包裹有质粒pTGC的金粉子弹轰击烟草无菌苗叶片,经壮观霉素筛选后获得6株叶绿体型转基因植株。对T0代和T1代转基因植株进行PCR检测和Southern blot分析表明,外源基因已整合进烟草叶绿体基因组中,且T1代转基因植株已同质化。RT-PCR分析结果证实外源基因已在转录水平上表达。转基因植株的自交及正反交结果表明,外源基因在转基因后代中能够稳定遗传,遗传方式遵循母性遗传规律,不存在转基因的花粉漂移现象。
[1] Lee S Y. Bacterial polyhydroxyalkanoates. Biotechnol Bioeng, 1996, 49: 1–14[2] Steinbüchel A, Byrom D. Polyhydroxyalkanoic Acids. In: Novel Biomaterials from Biological Sources. New York: MacMillan Publishing Company, 1991. pp 123–213[3] Rehm B H A, Krüger N, Steinbüchel A. A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. J Biol Chem, 1998, 273: 24044–24051[4] Poirier Y, Dennis D E, Klomparens K, Somerville C. Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science, 1992, 256: 520–523[5] Houmiel K L, Slater S, Broyles D, Casagrande L, Colburn S, Gonzalez K, Mitsky T A, Reiser S E, Shah D, Taylor N B, Tran M, Valentin H E, Gruys K J. Poly (β-hydroxybutyrate) production in oilseed leukoplasts of Brassica napus. Planta, 1999, 209: 547–550[6] Hahn J J, Eschenlauer A C, Sleytr U B, Somers D A, Srienc F. Peroxisomes as sites for synthesis of polyhydroxyalkanoates in transgenic plants. Biotechnol Prog, 1999, 15: 1053–1057[7] Gray M W. Origin and evolution of organelle genomes. Curr Opin Genet Dev, 1993, 3: 884–890[8] Svab Z, Maliga P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA, 1993, 90: 913–917[9] Gong X-S(龚小松), Yan L-F(阎隆飞). Improvement of chloroplast DNA isolation from higher plant. Chin Sci Bull (科学通报), 1991, 36(6): 467–469 (in Chinese)[10]McBride K E, Svab Z, Schaaf D J, Hogan P S, Stalker D M, Maliga P. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technology, 1995, 13: 362–365[11]Baecker J J, Sneddon J C, Hollingsworth M J.Efficient translation in chloroplasts requires element(s) upstream of the putative ribosome binding site from atp I. Am J Bot, 2009, 96: 627–636[12]Chakrabarti S K, Lutz K A, Lertwiriyawong B, Svab Z, Maliga P. Expression of the cry9Aa2 B.t. gene in tobacco chloroplasts confers resistance to potato tuber moth. Transgenic Res, 2006, 15: 481–488[13]Dufourmantel N, Tissot G, Goutorbe F, Garçon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensts cry1Ab protoxin. Plant Mol Biol, 2005, 58: 659–668[14]Shimizu M, Goto M, Hanai M, Shimizu T, Izawa N, Kanamoto H, Tomizawa K I, Yokota A, Kobayashi H. Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco. Plant Physiol, 2008, 147: 1976–1983[15]Kumar S, Dhingra A, Daniell H. Plastid-expressed bataine aldehyde dehydrogenase gene in carrot cultured cells roots, and leaves confers enhanced salt tolerance.Plant Physiol, 2004, 136: 2843–2854[16]Hussein H S, Ruiz O N, Terry N, Daniell H. Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environ Sci Technol, 2007, 41: 8439–8446[17]Arlen P A, Falconer R, Cherukumilli S, Cole A, Cole A M, Oishi K K, Daniell H. Field production and functional evaluation of chloroplast-derived interferon-alphα2b. Plant Biotechnol J, 2007, 5: 511–525[18]Fernández-San Millán A, Farran I, Molina A, Mingo-Castel A M, Veramendi J. Expression of recombinant proteins lacking methionine as N-terminal amino acid in plastids: human serum albumin as a case study. J Biotechnol, 2007, 127: 593–604[19]Arlen P A, Singleton M, Adamovicz J J, Ding Y, Davoodi-Semiromi A, Daniell H. Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect Immun, 2008, 76: 3640–3650[20]Chebolu S, Daniell H. Stable expression of Gal/GalNac lectin of Entamoeba histolytica in transgenic chloroplasts and immunogenicity in mice towards vaccine development for amoebiasis. Plant Biotechnol J, 2007, 5: 230–239[21]Shao H B, He D M, Qian K X, Shen G F, Su Z L. The expression of classical swine fever virus structural protein E2 gene in tobacco chloroplasts for applying chloroplasts as bioreactors. C R Biologies, 2008, 331: 179–184[22]Roh K H, Shin K S, Lee Y H, Seo S C, Park H G, Daniell H, Lee S B. Accumulation of sweet protein monellin is regulated by the psbA 5¢ UTR in tobacco chloroplasts. J Plant Biol,2006, 49: 34–43[23]Nakahira Y, Shiina T. Plastid transformation in higher plants: application for chloroplast factory. Protein, Nucleic Acid and Enzyme (Tanpakushitsu Kakusan Koso),2005, 50: 1918–1920 (in Japanese)[24]Zhang J-Y(张景昱), Su N(苏宁), Zhang Z-L(张中林), Zhao H-Y(赵华燕), Zhu S-W(朱生伟), Song Y-R(宋艳茹). Expressing of poly-3-hydroxybutyrate synthetic genes through chloroplast genetic engineering. Chin Sci Bull (科学通报), 2002, 47(11): 845–84 (in Chinese)[25]Arai Y, Shikanai T, Doi Y, Yoshida S, Yamaguchi I, Nakashita H. Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant Cell Physiol, 2004, 45: 1176–1184[26]Romano A, van der Plas L H W, Witholt B, Eggink G, Mooibroek H. Expression of poly-3-(R)-hydrozyalkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs. Planta, 2005, 220: 455–464[27]Nawrath C, Poirier Y, Somerville C. Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc Natl Acad Sci USA, 1994, 91: 12760–12764 |
[1] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[2] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[3] | 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227. |
[4] | 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868. |
[5] | 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293. |
[6] | 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198. |
[7] | 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005. |
[8] | 董庆园,马德清,杨学,刘勇,黄昌军,袁诚,方敦煌,于海芹,童治军,沈俊儒,许银莲,罗美中,李永平,曾建敏. 高抗黑胫病烤烟BAC文库的构建及分析[J]. 作物学报, 2020, 46(6): 869-877. |
[9] | 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512. |
[10] | 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869. |
[11] | 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996. |
[12] | 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058. |
[13] | 崔月,陆建农,施玉珍,殷学贵,张启好. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7): 1111-1118. |
[14] | 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418. |
[15] | 童治军,张谊寒,陈学军,曾建敏,方敦煌,肖炳光. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482. |
|