欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (11): 1949-1957.doi: 10.3724/SP.J.1006.2009.01949

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

phaGphaC基因在烟草叶绿体中的转化及其遗传分析

王玉华1,吴忠义2,张秀海2,王永勤2,黄丛林2,*,贾敬芬1   

  1. 1西北大学生命科学学院/陕西省生物技术重点实验室/西部资源生物与现代生物技术教育部重点实验室,陕西西安710069;2北京市农林科学院北京农业生物技术研究中心,北京100097
  • 收稿日期:2009-04-14 修回日期:2009-07-25 出版日期:2009-11-12 网络出版日期:2009-09-07
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)(2002AA213051),北京市自然科学基金项目(5062012),陕西省教育厅自然科学专项(09JK777)资助。

Transformation of phaG and phaC Genesis into Tobacco Chloroplast Genome and Genetic Analysis

WANG Yu-Hua1,WU Zhong-Yi2,ZHANG Xiu-Hai2,WANG Yong-Qin2,HUANG Cong-Lin2,*,JIA JIng-Fen1   

  1. 1College of Life Sciences,Northwest University/Shaanxi Provincial Key Laboratory of Biotechnology/Key Laboratory of Resource Biology and Biotechnology in Westem China,Xi'an 710069,China;2Beijing Agro-Biotechnology Research Center,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China
  • Received:2009-04-14 Revised:2009-07-25 Published:2009-11-12 Published online:2009-09-07

摘要:

中长链羟基脂肪酸聚酯(medium-chain-length-PHAs, mcl-PHAs) 属于微生物聚酯。羟酰-CoA-ACP-转移酶和IIPHA合酶是mcl-PHAs生物合成途径中的两个关键酶。将编码羟酰-CoA-ACP-转移酶的基因phaG与水稻叶绿体psbA基因的启动子和终止子连接构建表达盒RpsbA-pro-phaG-RpsbA-ter,将IIPHA合酶的基因phaC与水稻叶绿体16S rRNA基因的强启动子PrrnrbcL基因的终止子连接构建表达盒prrn-phaC-RrbcL-ter,连同壮观霉素抗性基因aadA表达盒prrn-aadA-TpsbA-ter一起克隆进烟草叶绿体基因组同源片段rbcLaccD之间,得到烟草叶绿体表达载体pTGC。用包裹有质粒pTGC的金粉子弹轰击烟草无菌苗叶片,经壮观霉素筛选后获得6株叶绿体型转基因植株。对T0代和T1代转基因植株进行PCR检测和Southern blot分析表明,外源基因已整合进烟草叶绿体基因组中,且T1代转基因植株已同质化。RT-PCR分析结果证实外源基因已在转录水平上表达。转基因植株的自交及正反交结果表明,外源基因在转基因后代中能够稳定遗传,遗传方式遵循母性遗传规律,不存在转基因的花粉漂移现象。

关键词: 烟草, 叶绿体转化, phaG和phaC, 遗传分析

Abstract:

Polyhydroxyalkanoates (PHAs) belong to the group of microbial polyesters, which are a class of polymers produced by various species of bacteria as source of carbon and energy reserve. Due to their properties of biodegradable thermoplastics and elastomers, PHAs have been regarded as ideal alternatives to traditional petroleum-derived plastics in medical areas and many other areas of high technology and high-value. Compared with short-chain-length-PHAs (scl-PHAs), such as polyhydroxybutyrate (PHB), medium-chain-length-PHAs (mcl-PHAs) copolymers are less crystalline, and are more flexible polymers with low melting points, and generally regarded as elastomers. PHAs were produced commercially by bacterial fermentation method, but the process was not economically competitive with petrochemical-based polymers. At present, novel efforts are focused on using the transgenic plants as bioreactors to produce PHAs.Both 3-hydroxyacyl-CoA-ACP-transferase and type II PHA synthase are the key enzymes for mcl-PHAs biosynthesis. The gene phaG encoding 3-hydroxyacyl-CoA-ACP-transferase was placed under the control of psbA-pro and psbA-ter of rice to construct phaG expression cassette, and the gene phaC encoding type II PHA synthase was placed under the control of prrn and rbcL-ter of rice to construct phaC expression cassette, which were ligated with the screening marker gene aadA expression cassette prrn-aadA-TpsbA-ter. These recombined fragments were cloned between the plastid rbcL and accD genes of tobacco for targeting to the large single copy region of chloroplast genome. Chloroplast expression vector of pTGC was constructed and then transformed into tobacco chloroplast genome through particle bombardment. Six transplastomic tobacco plants were obtained by spectinomycin screening. PCR and Southern blot analysis confirmed integration of phaG and phaC genesinto chloroplast genome of T0 and T1 transgenic plants, and T1 transgenic plants exhibited homogenization. The expression of phaC and phaG at transcription level was detected by reverse transcriptase–polymerase chain reaction (RT-PCR). Recombinant transgenes in the tobacco chloroplast genome were maternally inherited and were not transmitted via pollen when out-crossed with untransformed female plants.

Key words: Tobacco, Chlorophlst genetic transformation, phaG and phaC, Maternally inheritance, Genetic analysis

[1]   Lee S Y. Bacterial polyhydroxyalkanoates. Biotechnol Bioeng, 1996, 49: 1–14

[2]   Steinbüchel A, Byrom D. Polyhydroxyalkanoic Acids. In: Novel Biomaterials from Biological Sources. New York: MacMillan Publishing Company, 1991. pp 123–213

[3]   Rehm B H A, Krüger N, Steinbüchel A. A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. J Biol Chem, 1998, 273: 24044–24051

[4]   Poirier Y, Dennis D E, Klomparens K, Somerville C. Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science, 1992, 256: 520–523

[5]   Houmiel K L, Slater S, Broyles D, Casagrande L, Colburn S, Gonzalez K, Mitsky T A, Reiser S E, Shah D, Taylor N B, Tran M, Valentin H E, Gruys K J. Poly (β-hydroxybutyrate) production in oilseed leukoplasts of Brassica napus. Planta, 1999, 209: 547–550

[6]   Hahn J J, Eschenlauer A C, Sleytr U B, Somers D A, Srienc F. Peroxisomes as sites for synthesis of polyhydroxyalkanoates in transgenic plants. Biotechnol Prog, 1999, 15: 1053–1057

[7]   Gray M W. Origin and evolution of organelle genomes. Curr Opin Genet Dev, 1993, 3: 884–890

[8]   Svab Z, Maliga P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA, 1993, 90: 913–917

[9]   Gong X-S(龚小松), Yan L-F(阎隆飞). Improvement of chloroplast DNA isolation from higher plant. Chin Sci Bull (科学通报), 1991, 36(6): 467–469 (in Chinese)

[10]McBride K E, Svab Z, Schaaf D J, Hogan P S, Stalker D M, Maliga P. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technology, 1995, 13: 362–365

[11]Baecker J J, Sneddon J C, Hollingsworth M J.Efficient translation in chloroplasts requires element(s) upstream of the putative ribosome binding site from atp I. Am J Bot, 2009, 96: 627–636

[12]Chakrabarti S K, Lutz K A, Lertwiriyawong B, Svab Z, Maliga P. Expression of the cry9Aa2 B.t. gene in tobacco chloroplasts confers resistance to potato tuber moth. Transgenic Res, 2006, 15: 481–488

[13]Dufourmantel N, Tissot G, Goutorbe F, Garçon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensts cry1Ab protoxin. Plant Mol Biol, 2005, 58: 659–668

[14]Shimizu M, Goto M, Hanai M, Shimizu T, Izawa N, Kanamoto H, Tomizawa K I, Yokota A, Kobayashi H. Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco. Plant Physiol, 2008, 147: 1976–1983

[15]Kumar S, Dhingra A, Daniell H. Plastid-expressed bataine aldehyde dehydrogenase gene in carrot cultured cells roots, and leaves confers enhanced salt tolerance.Plant Physiol, 2004, 136: 2843–2854

[16]Hussein H S, Ruiz O N, Terry N, Daniell H. Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environ Sci Technol, 2007, 41: 8439–8446

[17]Arlen P A, Falconer R, Cherukumilli S, Cole A, Cole A M, Oishi K K, Daniell H. Field production and functional evaluation of chloroplast-derived interferon-alphα2b. Plant Biotechnol J, 2007, 5: 511–525

[18]Fernández-San Millán A, Farran I, Molina A, Mingo-Castel A M, Veramendi J. Expression of recombinant proteins lacking methionine as N-terminal amino acid in plastids: human serum albumin as a case study. J Biotechnol, 2007, 127: 593–604

[19]Arlen P A, Singleton M, Adamovicz J J, Ding Y, Davoodi-Semiromi A, Daniell H. Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect Immun, 2008, 76: 3640–3650

[20]Chebolu S, Daniell H. Stable expression of Gal/GalNac lectin of Entamoeba histolytica in transgenic chloroplasts and immunogenicity in mice towards vaccine development for amoebiasis. Plant Biotechnol J, 2007, 5: 230–239

[21]Shao H B, He D M, Qian K X, Shen G F, Su Z L. The expression of classical swine fever virus structural protein E2 gene in tobacco chloroplasts for applying chloroplasts as bioreactors. C R Biologies, 2008, 331: 179–184

[22]Roh K H, Shin K S, Lee Y H, Seo S C, Park H G, Daniell H, Lee S B. Accumulation of sweet protein monellin is regulated by the psbA 5¢ UTR in tobacco chloroplasts. J Plant Biol,2006, 49: 34–43

[23]Nakahira Y, Shiina T. Plastid transformation in higher plants: application for chloroplast factory. Protein, Nucleic Acid and Enzyme (Tanpakushitsu Kakusan Koso),2005, 50: 1918–1920 (in Japanese)

[24]Zhang J-Y(张景昱), Su N(苏宁), Zhang Z-L(张中林), Zhao H-Y(赵华燕), Zhu S-W(朱生伟), Song Y-R(宋艳茹). Expressing of poly-3-hydroxybutyrate synthetic genes through chloroplast genetic engineering. Chin Sci Bull (科学通报), 2002, 47(11): 845–84 (in Chinese)

[25]Arai Y, Shikanai T, Doi Y, Yoshida S, Yamaguchi I, Nakashita H. Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant Cell Physiol, 2004, 45: 1176–1184

[26]Romano A, van der Plas L H W, Witholt B, Eggink G, Mooibroek H. Expression of poly-3-(R)-hydrozyalkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs. Planta, 2005, 220: 455–464

[27]Nawrath C, Poirier Y, Somerville C. Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc Natl Acad Sci USA, 1994, 91: 12760–12764

[1] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[4] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[5] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[6] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[7] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[8] 董庆园,马德清,杨学,刘勇,黄昌军,袁诚,方敦煌,于海芹,童治军,沈俊儒,许银莲,罗美中,李永平,曾建敏. 高抗黑胫病烤烟BAC文库的构建及分析[J]. 作物学报, 2020, 46(6): 869-877.
[9] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[10] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[11] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[12] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[13] 崔月,陆建农,施玉珍,殷学贵,张启好. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7): 1111-1118.
[14] 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418.
[15] 童治军,张谊寒,陈学军,曾建敏,方敦煌,肖炳光. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!