欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (11): 2022-2028.doi: 10.3724/SP.J.1006.2009.02022

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

斑茅cDNA中抗病基因同源序列的分离和表达特性分析

阙友雄,许莉萍*,林剑伟,徐景升,张木清*,陈如凯   

  1. 福建农林大学/农业部甘蔗遗传改良重点开放实验室,福建福州350002
  • 收稿日期:2009-02-18 修回日期:2009-06-25 出版日期:2009-11-12 网络出版日期:2009-09-08

Isolation and Characterization of Disease Resistance Gene Analogs from Erianthus arundinaceus cDNA

QUE You-Xiong,XU Li-Ping*,LIN Jian-Wei,XU Jing-Sheng,ZHANG Mu-Qing*,CHEN Ru-Kai   

  1. Key Laboratory of Sugarcane Genetic Improvement,Ministry of Agriculture, Fujian Agriculture and Forestry University,Fuzhou 350002,China
  • Received:2009-02-18 Revised:2009-06-25 Published:2009-11-12 Published online:2009-09-08
  • Supported by:

    This study was financially supported by the Fujian Natural Science Foundation(2009J05050),the China High Technology (863) Project(2007AA100701),the National 948 Project(2006-G37),National Science and Technology Project File of Science and Technology Commission,Fujian Science Department(F2007AA100701),the earmarked fund for Modern Agro-industry Technology Research System

摘要:

植物抗病基因具有一些特定的保守结构域。本研究根据已知植物同源抗病基因(RGAs)保守序列设计简并引物, 从甘蔗近缘植物斑茅的cDNA中扩增出6条抗病基因同源序列, 它们在NCBI上登录号分别为EU685835EU685836EU685837EU685838EU685839 EU685840。序列分析表明, 这些RGAs均含有典型的NBS-LRR类抗病基因保守结构域P-loopKinase-2aKinase-3a和疏水结构域(Hydrophobic domain, HD)。氨基酸序列的同源性比对表明,6RGAs序列同11条参试的抗病基因之间的同源性为8.3%~93%,而6RGAs之间的氨基酸序列同源为30.5%~45.6%。另外,本实验所克隆的6条斑茅抗病基因同源序列中, kinase-2 (LLVLDDVW/D)最后一个氨基酸皆为色氨酸,推测所克隆的NBS-LRR类抗病基因都属于non-TIR-NBS-LRR类。定量PCR分析表明, 6条斑茅抗病基因同源序列在根、茎和叶片中组成型表达,同时这些抗病基因同源序列的表达会受外源信号分子水杨酸和过氧化氢的上调作用,可能在斑茅的抗病性中具有一定的作用。

关键词: 斑茅, 抗病基因同源序列, 间并引物, 定量PCR

Abstract:

Plant disease resistance genes (R-genes) encode some conserved motifs. According to the conserved motifs present in the known NBS-LRR R-gene sequences and R gene analogs (RGAs), several degenerate primers were designed and applied in the RGA isolation from Erianthus arundinaceus using PCR approach. In total, 6 RGAs were successfully obtained, with GenBank Accession numbers of EU685835, EU685836, EU685837, EU685838, EU685839, and EU685840. Multiple alignments showed that the encoding sequences of the six clones were highly conserved and strikingly similar to the eleven most typical NBS-LRR type R-gene peptide sequences, especially at the four NBS motifs of P-loop, kinase-2, kinase-3a, and HD. The identity percentage at the amino-acid level ranged from 8.3% to 93.0% among all 17 sequences tested and from 30.5% to 45.6% among the six cloned RGAs in this study.The results of cluster analysis and the existence of an aspartic acid residue (D) at the final residue position of the kinase-2 motif also indicated that all of E. arundinaceus RGAs might belong to non-TIR group. Finally, Real-time PCR results showed that all of the RGAs were constitutively expressed in roots, stalks and leaves of E. arundinaceus, and their expression could be up-regulated in leaves by the exogenous signal molecules SA and H2O2. Therefore, it suggested that E. arundinaceus RGAs might play important roles in disease resistance in an SA- and H2O2-dependent defense response pathway. Further studies should aim to clone full-length R-genes in E. arundinaceus and characterize their functions in defense responses.

Key words: Erianthus arundinaceus, Resistance gene analogs(RGAs), Degenerate primers, Real-time PCR

[1] Thilmony R L, Chen Z, Bressan R A, Martin G B. Expression of the tomato Pto gene in tobacco enhances resistance to Pseudomonas syringae pv tabaci expressing avrPto. Plant Cell, 1995, 7: 1529-1536

[2] Dangl J L, Jones J D G. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411: 826-833

[3] Jones J D. Putting knowledge of plant disease resistance genes to work. Curr Opin Plant Biol, 2001, 4: 281-287

[4] McDowell J M, Woffenden B J. Plant disease resistance genes: recent insights and potential applications. Trends Biotechnol, 2003, 21: 178-183

[5] Bent A F, Kunkel B N, Dahlbeck D, Brown K L, Schmidt R, Giraudat J, Leung J, Staskawicz B J. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes, Science, 1994, 265: 1856-1860

[6] Grant M R, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes R W, Dangl J L. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 1995, 269: 843-856

[7] Parker J E, Coleman M J, Szabo V, Frost L N, Schmidt R, van der Biezen E A, Moores T, Dean C, Daniels M J, Jones J D. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell, 1997, 9: 879-894

[8] Whitham S, Dinesh-Kumar S P, Choi D, Hehl R, Corr C, Baker B. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell, 1994, 78: 1101-1015

[9] Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaarde P, Reijans M. The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat Biotech, 1998, 16: 1365-1369

[10] Lawrence G J, Finnegan E J, Ayliffe M A, Ellis J G. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell, 1995, 7: 1195-1206

[11] Kanazin V, Marek L F, Shoemaker R C. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA, 1996, 93: 11746-11750

[12] Leister D, Ballvora A, Salamini F, Gebhardt C. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet, 1996, 14: 421-429

[13] Seah S, Sivasithamparam K, Karakousis A, Lagudah E S. Cloning and characterisation of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet, 1998, 97: 937-945

[14] Shen K A, Meyers B C, Islam-Faridi M N, Chin D B, Stelly D M, Michelmore R W. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact, 1998, 11: 815-823

[15] Yu Y G, Buss G R, Maroof M A. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA, 1996, 93: 11751-11756

[16] Aarts M G M, Lintel H B, Holub E B, Beynon J L, Stiekema W J, Pereira A. Identification of R-gene gomologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact, 1998, 11: 251-258

[17] Nakayama S. Species-specific accumulation of interspersed sequences in genus Saccharum. Genes Genet Syst, 2004, 79: 361-365

[18] Piperidis G, Christopher M J, Carroll B J, Berding N, D’Hont A. Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceus. Genome, 2000, 43: 1033-1037

[19] Que Y X, Li W, Xu J S, Xu L P, Zhang M Q, Chen R K. A simple and versatile protocol for isolation of RNA from plant, fungi and animal. J Agric Sci Technol, 2008, 2: 63-65

[20] Que Y-X(阙友雄), Yang Z-X(杨志霞), Xu L-P(许莉萍), Chen R-K(陈如凯). Isolation and identification of differentially expressed genes in sugarcane infected by Ustilago scitaminea. Acta Agron Sin (作物学报), 2009, 35(3): 452-458 (in Chinese with English abstract)

[21] Pan Q, Wendel J, Fluhr R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol, 2000, 50: 203-213

[22] Que Y-X(阙友雄), Xu L-P(许莉萍), Lin J-W(林剑伟), Chen R-K(陈如凯). Isolation and characterization of NBS-LRR resistance gene analogs from sugarcane. Acta Agron Sin (作物学报), 2009, 35(4): 631-639 (in Chinese with English abstract)

[23] Pei X W, Li S G, Jiang Y, Zhang Y Q, Wang Z X, Jia S. Isolation, characterization and phylogenetic analysis of the resistance gene analogues (RGAs) in banana (Musa spp.). Plant Sci, 2007, 172: 1166-1174

[24] Meyers B C, Kozik A, Griego A, Kuang H, Michelmore R W. Genome-wide analysis of NBS-LRR-encoding genes inArabidopsis. Plant Cell, 2003, 15: 809-834

[25] Ellis J, Jones D. Structure and function of proteins controlling strain-specific pathogen resistance in plants. Curr Opin Plant Biol, 1998, 1: 288-293

[26] Raskin I. Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 439-463

[27] Wu G, Shortt B J, Lawrence E B, Levine E B, Fitzsimmons K C, Shah D M. Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell, 1995, 7: 1357-1368

[28] Klessig D F, Malamy J. The salicylic acid signal in plants. Plant Mol Biol, 1994, 26: 1439-1458

[29] Ward E R, Uknes S J, Williams S C, Dincher S S, Wiederhold D L, Alexander D C, Ahl-Goy P, Metraux J P, Ryals J A. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell, 1991, 3: 1085-1094
[30] Hammond-Kosack K E, Jones J D. Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 575-607
[1] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[2] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[3] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[4] 高世武,傅志伟,陈云,林兆里,许莉萍,郭晋隆. 甘蔗热带种金属硫蛋白家族基因的克隆及响应重金属胁迫的表达分析[J]. 作物学报, 2020, 46(02): 166-178.
[5] 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016.
[6] 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392.
[7] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
[8] 李鹏,张琳,叶吉妮,贺诗瑶,贾军伟,潘爱虎,唐雪明. 抗病转基因水稻M12及其产品成分的定性、定量PCR检测方法[J]. 作物学报, 2018, 44(7): 949-955.
[9] 段方猛, 罗秋兰, 鲁雪莉, 齐娜伟, 刘宪舜, 宋雯雯. 玉米油菜素甾醇生物合成关键酶基因ZmCYP90B1的克隆及其对逆境胁迫的响应[J]. 作物学报, 2018, 44(03): 343-356.
[10] 苏亚春,黄珑,凌辉,王竹青,刘峰,苏炜华,黄宁,吴期滨,高世武,阙友雄. 甘蔗CDK基因的cDNA全长克隆与表达分析[J]. 作物学报, 2017, 43(01): 42-50.
[11] 翟玉山,邓宇晴,董萌,徐倩,程光远,彭磊,林彦铨*,徐景升*. 甘蔗捕光叶绿素a/b 结合蛋白基因ScLhca3 的克隆及表达[J]. 作物学报, 2016, 42(09): 1332-1341.
[12] 强治全,梁雅珺,于正阳,杜娅,张帅,朱维宁,张林生. 小麦wzy2-1基因的克隆及功能分析[J]. 作物学报, 2016, 42(08): 1253-1258.
[13] 苏炜华,刘峰,黄珑,苏亚春,黄宁,凌辉,吴期滨,张华,阙友雄. 甘蔗Ca2+/H+反向运转体基因的克隆与表达分析[J]. 作物学报, 2016, 42(07): 1074-1082.
[14] 刘峰,苏炜华,黄珑,肖新换,黄宁,凌辉,苏亚春,张华,阙友雄. 甘蔗Na+/H+逆转运蛋白基因的克隆与表达分析[J]. 作物学报, 2016, 42(04): 501-512.
[15] 丛亚辉,王婷婷,柳聚阁,王宁,高萌萌,李艳,盖钧镒. 大豆耐铝毒候选基因GmSTOP1的克隆与表达分析[J]. 作物学报, 2015, 41(12): 1802-1809.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!