欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (4): 620-628.doi: 10.3724/SP.J.1006.2010.00620

• 耕作栽培·生理生化 • 上一篇    下一篇

农田开放式夜间增温系统的设计及其在稻麦上的试验效果

张彬1,郑建初3,田云录1,董文军1,陈金1,杨飞1,张卫建1,2,*   

  1. 1南京农业大学应用生态研究所,江苏南京210095;2中国农业科学院作物科学研究所/农业部作物生理生态与栽培重点开放实验室,北京100081;3江苏省农业科学院,江苏南京210014
  • 收稿日期:2010-01-07 修回日期:2010-01-20 出版日期:2010-04-12 网络出版日期:2010-02-09
  • 通讯作者: 张卫建,E-mail: zhangweij@caas.net.cn
  • 基金资助:
    本研究由国家自然科学基金项目(30771278),江苏省自然科学基金重点项目(BK2007159)和教育部新世纪优秀人才支持计划项目(NCET-050492)资助。

System Design of Free Air Temperature Increased (FATI) for Field Nighttime Warming Experiment and Its Effects on Rice-Wheat Cropping System

ZHANG Bin1,ZHENG Jian-Chu3,TIAN Yun-Lu1,DONG Wen-Jun1,CHEN Jin1,YANG Fei1,ZHANG Wei-Jian12*   

  1. 1Institute of Applied Ecology,Nanjing Agricultural University,Nanjing 210095,China;2Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology,ecology & Production,Ministry of Agriculture,Beijing 100081,China;3Jiangsu Academy of Agricultural Sciences,Nanjing 210095,China
  • Received:2010-01-07 Revised:2010-01-20 Published:2010-04-12 Published online:2010-02-09
  • Contact: ZHANG Wei-Jian,E-mail: zhangweij@caas.net.cn

摘要:

气候变暖存在明显的昼夜不对称性,夜间增温显著高于白天。设计可靠的田间增温设施,研究作物系统对夜间增温的响应与适应意义显著。为此,笔者参考国际相关增温系统,于20062009年在江苏南京设计并运行了我国首个农田开放式夜间增温系统(FATI: Free Air Temperature Increased),对稻麦进行夜间主动增温试验,监测系统温度、麦田土壤水分和作物生育进程和产量,以评价该系统的可行性和对稻麦的增温效果。结果表明,该系统有效且均匀的增温范围为4 m2,增温效果明显。在测试用的人工草坪上,晴天、阴天和雨天3种天气情况下,该系统4 m2有效增温范围内地表的夜温平均升高2.42.32.1。在草坪的垂直层面上,该系统可以使距地下5 cm、地表、地上40 cm90 cm 4个层次的夜温平均分别提高1.22.30.72.2。在稻麦两熟农田中,稻季全生育期地下5 cm、地表、植株中部和冠层的夜温平均分别提高0.70.61.01.6,麦季相应层次可升高1.21.51.81.9。在稻麦全生育期内,增温小区各层温度的变化动态与未增温区的一致。另外,该系统未改变麦田耕层土壤水分分布特征,尽管耕层土壤含水量略有降低,0~25 cm内各层土壤含水量的降幅均在0.99~1.62个百分点以内,与未增温区差异不显著。夜间增温可以显著缩短作物前期生育期,使稻麦始穗期分别提早2.5 d11.5 d;同时,夜间增温使水稻平均减产4.51%,但小麦增产18.30%。尽管在作物的不同生育期,该设施的增温幅度有所差异,但这与田间实际情况下不同季节气候变暖幅度不同之特征是一致的。因此,该开放式夜间增温系统符合气候变暖的温度变化特征,可以满足水稻和小麦所代表的典型作物系统对夜间增温的响应与适应的试验研究要求。

关键词: 气候变暖, 开放式增温系统, 夜间增温, 稻麦两熟系统, 远红外增温

Abstract:

There is evident asymmetry in climate warming between daytime and nighttime with the highest warming rate occurring at nighttime. Since there are high uncertainties in the projecting of climate warming effects on crop production using crop models, it is essential to design a reliable field warming system to study the responses of crop production system to nighttime warming in field. Therefore, based on existing field warming facilities in the world, we designed a rice-wheat warming system in Nanjing, Jiangsu province, the first facility of Free Air Temperature Increased (FATI) for crop production in China, to study the effects of nighttime warming on crop growing duration and yields during 2006–2009. The results showed that the warming effect of this facility was significant and well-distributed within 2 m × 2 m area. In sunny, rainy and cloudy days, the night temperatures on the field surface within the 4 m2 warming area were increased by 2.4℃, 2.3℃, 2.1℃ on average on the tested turfgrass land. At the vertical dimension, the night temperatures of 5 cm underground, ground surface, 40 cm aboveground, and 90 cm aboveground were enhanced by 1.2℃, 2.3℃, 0.7℃, 2.2℃ on average. In the rice growing period, the night temperatures of 5 cm underground, field surface, the middle part of crop community and the canopy were 0.7, 0.6, 1.0, and 1.6℃ higher compared to the un-warming plots, respectively. In the winter-wheat growing period, the increments were 1.2℃, 1.5℃, 1.8℃, and 1.9℃, respectively. During the whole crop growing period, the trends of diurnal change of the above temperatures in warming plots were all similar with those in the un-warming plots. The distributed characteristics of soil moisture in wheat field were not significantly changed under this warming facility but with a slightly decreasing trend. The decrements of soil moisture in the 0–25 cm soil layers were all within the scale of 0.99–1.62 percentage points with no significant difference compared to the un-warming control. Under this warming facility, rice and wheat growing stages were significantly changed, and the durations of rice and wheat from the sowing date to the initial heading date were shortened by 2.5 d and 11.5 d respectively. Nighttime warming reduced rice yield by 4.51%, but increased wheat yield by 18.30% on average. Although, there existed significant differences in the warming rates among different stages of crop growing byusing the warming facility, evident seasonal discrepancy of warming rates also often occurred in the real fields under climate warming situation. Therefore, the above results suggest that this night warming facility meets with the temperature characteristics of climate warming and can be used for studies on the responses of crop production system to nighttime warming.

Key words: Climate warming, Free Air Temperature Increased(FATI), Nighttime warming, Rice-wheat cropping system, Far-infrared warming

[1]       IPCC. Climate Change. Synthesis Report: Summary for Policymakers, 2007

[2010-1-28]. http://www.ipcc.ch

[2]       NDRC. Reply to Climate Change in China
(中国应对气候变化国家方案), National Development and Reform Commission, China, 2007 (in Chinese)

[3]       FAO. Rice in Human Nutrition. Food and Agriculture Organization of the United Nations, Rome, 1993

[4]       Harvey L D. Warm days, hot nights. Nature, 1995, 377: 15–16

[5]       Easterling D R, Horton B, Jones P D, Peterson T C, Karl T R, Parker D E, Salinger M J, Razuvayev V, Plummer N, Jamason P, Folland C K. Maximum and minimum temperature trends for globe. Science, 1997, 277: 364–367

[6]       Karl T R, Jones P D, Knight R W, Kukla G , Plummer N, Razuvayer V, Gallo K P, Lindseay J, Charlson R J, Peterson T C. A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperature. Bull Am Meteorol Soc, 1993, 74: 1007–1023

[7]       Yan M-H(闫敏华), Chen B-Q(陈泮勤), Deng W(邓伟), Liang L-Q(梁丽乔). Further understanding of the Sanjiang plain warming: changes in maximum and minimum air temperature. Ecol Environ (生态环境), 2005, 14(2): 151–156 (in Chinese with English abstract)

[8]       Parry M L, Swaminathan M S. Effects of Climate Change on Food Production. Cambridge: Cambridge University Press, 1992

[9]       Ju H(居辉), Xiong W(熊伟), Xu Y-L(许吟隆), Lin E-D(林而达). Impacts of climate change on wheat yield in China. Acta Agron Sin (作物学报), 2005, 31(10): 1340–1343 (in Chinese with English abstract)

[10]    Yang X(杨修).Sun F(孙芳), Lin E-D(林而达), Ju H(居辉), Xiong W(熊伟). Sensitivity and vulnerability of rice to climate change in China. Journal of Natural Disasters(自然灾害学报), 2004, 13(5): 85–89 (in Chinese with English abstract)

[11]    Peng S P, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 101: 9971–9975

[12]    Lin E D, Xiong W, Ju H, Xu Y L, L Y, Bai L P, Xie L Y. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philosophical Transactions of the Royal Society of London, Series B. 2005, 360: 2149–2154

[13]    Zhao P(赵平), Sun G-C(孙谷畴), Cai X-A(蔡锡安), Rao X-Q(饶兴权), Zeng X-P(曾小平). Night-time warming increases photosynthetic capacity of sapling leaf of Cinnamomum burmannii grown with different nitrogen supplies. Acta Ecol Sin (生态学报), 2005, 25(10): 2703–2708 (in Chinese with English abstract)

[14]    Wei J-L(魏金连), Pan X-H(潘晓华). Effects of night temperature increase on growth and yield of early season rice. Acta Agric Univ Jiangxiensis (江西农业大学学报), 2008, 30(3): 427–432 (in Chinese with English abstract)

[15]    Norby R J, Luo Y Q. Evaluating ecosystem response to rising atmospheric CO2 and global warming in multi-factor world. New Phytologist, 2004, 164: 281–293

[16]    Pendall E, Bridgham S , Hanson P J, Hungate B, Kicklighter D W, Johnson D W, Law B E, Luo Y Q, Megonigal J P, Olsrud M, Ryan M G, Wan S Q. Below-ground process response to elevated CO2 and temperature: a discussion of observations, measurement methods and models. New Phytologist, 2004, 162: 311–322

[17]    Kimball B A, Conley M M, Wang S P, Lin X W, Luo C, Morgan J, Smith D. Infrared heater arrays for warming ecosystem field plots. Global Change Biol, 2008, 14: 309–320

[18]    Beier C, Emmett B, Gundersen P, Tietema A, Peñuelas J, Estiarte M, Gordon C, Gorissen A, Llorens L, Roda F, Williams D. Novel approaches to study climate change effects on terrestrial ecosystems in the field: Drought and passive nighttime warming. Ecosystems, 2004, 7: 583–597

[20]    Niu S-L(
牛书丽), Han X-G(韩兴国), Ma K-P(马克平), Wan S-Q(万师强). Field facilities in global warming and terrestrial ecosystem research. J Plant Ecol (植物生态学报), 2007, 31(2): 262–271 (in Chinese with English abstract)

[21]    Emmett B A, Beier C, Estiarte M, Tietema A, Kristensen H L, Williams D, Peñuelas J, Schmidt I, Sowerby A. The response of soil processes to climate change: results from manipulation studies of shrublands across an environmental gradient. Ecosystems, 2004, 7: 625–637

[22]    Wan S Q, Hui D F, Wallace L, Luo Y Q. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochem Cycles, 2005, 19: 1–13

[23]    Nijs I, Kockelbergh F, Teughels H, Blum H, Hendrey G, Impens I.Free Air Temperature Increase (FATI): A new tool to study global warming effects on plants in the field. Plant, Cell Environment, 1996, 19: 495–502

[24]    Kimball
B A. Theory and performance of an infrared heater for ecosystem warming. Global Change Biol, 2005, 11: 2041–2056

[25]    Zhang B(张彬), Zheng J-C(郑建初), Huang S(黄山), Tian Y-L(田云录), Peng L(彭兰), Bian X-M(卞新民), Zhang W-J(张卫建). Temperature differences of air-rice plant under different irrigated water depths at spiking stage. Chin J Appl Ecol (应用生态学报), 2008, 19(1): 87–92 (in Chinese with English abstract)
Wang C-Y(王晨阳), Guo T-C(郭天财), Yan Y-L(阎耀礼), Zhu Y-J(朱云集), Xia G-J(夏国军), Wang H-C(王化岑), Zhou J-Z(周继泽). Effects of short post-anthesis high temperature stress on leaf photosynthetic potential in winter wheat. Acta Agron Sin (作物学报), 2004, 30(1): 88–91 (in Chinese with English abstract)
[1] 阮俊梅, 张俊, 刘猷红, 董文军, 孟英, 邓艾兴, 杨万深, 宋振伟, 张卫建. 田间开放式增温对东北水稻氮素利用的影响[J]. 作物学报, 2022, 48(1): 193-202.
[2] 凌霄霞,张作林,翟景秋,叶树春,黄见良. 气候变化对中国水稻生产的影响研究进展[J]. 作物学报, 2019, 45(3): 323-334.
[3] 孟繁圆,冯利平,张丰瑶,张祎,伍露,王春雷,闫锦涛,彭明喜,莫志鸿,余卫东. 北部冬麦区冬小麦越冬冻害时空变化特征[J]. 作物学报, 2019, 45(10): 1576-1585.
[4] 杨沈斌, 徐莎莎, 江晓东, 石春林, 王应平, 申双和. 作物模型中单叶最大光合作用速率的温度响应修订[J]. 作物学报, 2018, 44(05): 750-761.
[5] 田景山, 虎晓兵, 勾玲, 罗宏海, 张亚黎, 赵瑞海, 张旺锋. 新疆棉花生育后期夜间增温对纤维产量和比强度的影响[J]. 作物学报, 2012, 38(01): 140-147.
[6] 董文军, 田云录, 张彬, 陈金, 张卫建. 非对称性增温对水稻品种南粳44米质及关键酶活性的影响[J]. 作物学报, 2011, 37(05): 832-841.
[7] 田云录, 陈金, 邓艾兴, 郑建初, 张卫建. 非对称性增温对冬小麦籽粒淀粉和蛋白质含量及其组分的影响[J]. 作物学报, 2011, 37(02): 302-308.
[8] 蒲金涌;姚小英;邓振镛;姚玉璧;王位泰;张谋草. 气候变暖对甘肃冬油菜(Brassica compestris L.)种植的影响[J]. 作物学报, 2006, 32(09): 1397-1401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!