作物学报 ›› 2010, Vol. 36 ›› Issue (4): 612-619.doi: 10.3724/SP.J.1006.2010.00612
甘露1,2,李殿荣1,3,臧新4,付春华1,2,余龙江1,2,栗茂腾1,2,*
GAN Lu1,2,LI Dian-Rong1,3,ZANG Xin4,FU Chun-Hua1,2,YU Long-Jiang1,2,LI Mao-Teng12*
摘要:
[1] Choe L H, Lee K H. A comparison of three commercially available isoelectricfocusing units for proteome analysis: The multiphor, the IPGphor and the protean IEF cell. Electrophoresis, 2000, 21: 993–1000 [2] Cutler P, Bell D J, Birrell H C, Connelly J C, Connor S C, Holmes E, Mitchell B C, Monté S Y, Neville B A, Pickford R, Polley S, Schneider K, Skehel J M. An integrated proteomic approach to studying glomerular nephrotoxicity. Electrophoresis, 1999, 20: 3647–3658 [3] Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000, 21: 1037–1053 [4] Liang Y(梁宇), Jing Y-X(荆玉祥), Shen S-H(沈世华). Advances in plant proteomics. Acta Phytoecol Sin (植物生态学报), 2004, 28(1): 114–125 (in Chinese with English abstract) [5] O'Farrell P H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 1975, 250: 4007–4021 [6] Bjellqvist B, Ek K, Righetti P G, Gianazza E, Görg A, Westermeier R, Postel W. Isoelectric focusing in immobilized pH gradients: Principle, methodology and some applications. J Biochem Biophys Methods, 1982, 6: 317–39 [7] Lei H-L(雷红灵), Fu M(付明), WU Y-Y(吴永尧). Study on two-dimension electrophoresis of seed proteins of Cardamine enshiensis. Hubei Agric Sci (湖北农业科学), 2008, 47(10): 1114–1116 (in Chinese with English abstract) [8] Gallardo K, Job C, Groot S P C, Puype M, Demol H, Vandekerckhove J, Job D. Proteomics of Arabidopsis seed Germination: A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol, 2002, 129: 823–837 [9] Jiang Y Q, Yang B, Harris N S, Deyholos M K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot, 2007, 58: 3591–3607 [10] Rutschow H, Ytterberg A J, Friso G, Nilsson R, van Wijk K J. Quantitative proteomics of a chloroplast SRP54 sorting mutant and its genetic interactions with CLPC1 in Arabidopsis. Plant Physiol, 2008, 148: 156–175 [11] Parker T, Flowers T J, Moore A L, Harpham N V. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot, 2006, 57: 1109–1118 [12] Kim S T, Kim S G, Kang Y H, Wang Y, Kim J Y, Yi N, Kim J K, Rakwal R, Koh H J, Kang K Y. Proteomics analysis of rice lesion mimic mutant (sp/1) reveals tightly localized probenazole-induced protein (PBZ1) in cells undergoing programmed cell death. J Proteome Res, 2008, 7: 1750–1760 [13] Natarajan S, Xu C, Caperna T J, Garrett W M. Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins. Anal Biochem, 2005, 342: 214–220 [14] Amme S, Rutten T, Melzer M, Sonsmann G, Vissers J P, Cschlesier B, Mock H P. A proteome approach defines protective functions of tobacco leaf trichomes. Proteomics, 2005, 5: 2508–2518 [15] Chen S B, Gollop N, Heuer B. Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: Effect of genotype and exogenous application of glycinebetaine. J Exp Bot, 2009, 60: 2005–2019 [16] Huang Pu-H-Y(皇甫海燕), Guan C-Y(官春云), Guo B-S(郭宝顺), Zhang X-Y(张秀英). Progress in proteomics and plant proteomics research. Crop Res (作物研究), 2006, 5: 577–581 (in Chinese with English abstract) [17] Meza-Basso L, Alberdi M, Raynal M, Ferrero-Cadinanos M L, Delseny M. Changes in protein synthesis in rapeseed (Brassica napus) seedlings during a low temperature treatment. Plant Physiol, 1986, 82: 733–738 [18] Mihr C, Baumgartner M, Dieterich J H, Schmitz U K, Braun H P. Proteomic approach for investigation of cytoplasmic male sterility (CMS) in Brassica. J Plant Physiol, 2001, 158: 787–794 [19] Hajduch M, Casteel J E, Hurrelmeyer K E, Song Z, Agrawal G K, Thelen J J. Proteomic analysis of seed filling in Brassica napus: Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis1. Plant Physiol, 2006, 141: 32–46 [20] Agrawal G K, Hajduch M, Graham K, Thelen J J. In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed. Plant Physiol, 2008, 148: 504–518 [21] Sheoran I S, Pedersen E J, Ross A R, Sawhney V K. Dynamics of protein expression during pollen germination in canola (Brassica napus). Planta, 2009, 230: 779–793 [22] Desclos M, Dubousset L, Etienne P, Caherec F L, Satoh H, Bonnefoy J, Ourry A, Avice J C. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions. Plant Physiol, 2008, 147: 1830–1844 [23] Damerval C, Vienne D D, Zivy M, Thiellement H. Technical improvement in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling protein. Electrophoresis, 1986, 7: 53–54 [24] Gu R-S(谷瑞升), Liu Q-L(刘群录), Chen X-M(陈雪梅), Jiang X-N(蒋湘宁). An improved method of 2D electrophoresis for protein analysis of woody plants. J Beijing For Univ (北京林业大学学报–10 (in Chinese with English abstract)), 1999, 21(5): 7 [25] Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri G M, Carnemolla B, Orecchia P, Zardi L, Righetti P G. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis,2004, 25: 1327–1333 [26] Li X H, Wu X F, Yue W F, Liu J M, Li G L, Miao Y G. Proteomic analysis of the silkworm (Bombyx mori L.) hemolymph during developmental stage. J Proteome Res, 2006, 5: 2809–2814 [27] Ruan S-L(阮松林), Ma H-S(马华升), Wang S-H (王世恒), Xin Y(忻雅), Qian L-H(钱丽华), Tong J-X(童建新), Zhao H-P(赵杭苹), Wang J(王杰). Adevances in plant proteomics I: Key techniques of proteome. Hereditas (遗传), 2006, 28(11): 1472–1486 (in Chinese with English abstract) [28] Garfin D. Two-dimensional gel electrophoresis: An overview. Trends Anal Chem, 2003, 22: 263–272 [29] Wu M-C(吴满成), Hu H-T(胡海涛), Yu Y-J(余有见), Sun N(孙娜), Yang L(杨玲). Extraction and improvement of two-dimensional electrophoresis analysis of proteins form berries of Elaeagnus umbellate Thunb. Plant Physiol Commun (植物生理学通讯), 2009, 45: 695–698 (in Chinese) |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[4] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[5] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[6] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[7] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[8] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[9] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[10] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[11] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[12] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[13] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
[14] | 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471. |
[15] | 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274. |
|