欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (4): 602-611.doi: 10.3724/SP.J.1006.2010.00602

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米光周期敏感相关性状发育动态QTL定位

库丽霞,孙朝辉,王翠玲,张君,张伟强,陈彦惠*   

  1. 河南农业大学农学院,河南郑州450002
  • 收稿日期:2009-08-09 修回日期:2009-12-08 出版日期:2010-04-12 网络出版日期:2010-01-22
  • 通讯作者: 陈彦惠,E-mail:chy989@sohu.com
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)重大专项(2006AA100103)和河南省重大科技专项(06200110200)资助.

QTL Analysis of the Photoperiod Sensitivity-Related Traits at Different Developmental Stages in Maize(Zea mays L.)

KU Li-Xia,SUN Zhao-Hui,WANG Cui-Ling,ZHANG Jun,ZHANG Wei-Qiang,CHEN Yan-Hui*   

  1. College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
  • Received:2009-08-09 Revised:2009-12-08 Published:2010-04-12 Published online:2010-01-22
  • Contact: CHEN Yan-Hui,E-mail:chy989@sohu.com

摘要:

玉米是短日照作物,大多数热带种质对光周期非常敏感。光周期敏感性限制了温、热地区间的种质交流。研究玉米光周期敏感性的分子机理,有利于玉米种质的扩增、改良、创新,提高玉米品种对不同光周期变化的适应性。本研究以对光周期钝感的温带自交系黄早和对光周期敏感的热带自交系CML288为亲本配置的组合衍生的一套207个重组自交系为材料,在长日照环境条件下对不同发育时期的叶片数、株()高变化进行QTL分析。结果表明,双亲间的最终可见叶片数和株高差异很大;发育初期CML288的叶片数和苗高都低于黄早,而发育后期CML288的叶片数和株高都明显高于黄早四;测定各时期F7重组自交系间也存在显著差异。利用包含237SSR标记、图谱总长度1 753.6 cM、平均图距7.40 cM的遗传连锁图谱,采用复合区间作图法,分别检测到控制叶片数和株()高发育的QTL 11个和20个。但是,没有一个条件QTL 能在测定的几个时期都有效应。在长日照条件下,控制叶片数与株()高的非条件与条件QTL主要集中在第1910染色体上,特别是在第10染色体的标记umc1873附近均检测到了影响这两个性状的QTL,且在不同的发育时期单个条件和非条件QTL所解释的表型变异分别为4.34%~25.74%10.02%~22.57%,表明这一区域可能包含光周期敏感性关键基因。

关键词: 玉米, 光周期敏感性, QTL, 发育数量遗传

Abstract:

Maize is originally a short-day species and most tropical materials remain highly sensitive to photoperiod. Photoperiod sensitivity limits the potential for successful exchange of germplasm across temperate-tropical regions. Therefore, it would be very useful for breeders to better investigate the genetic basis of photoperiod sensitivity due to not only being benificial to expansion, improvement and innovation of germplasm but also enhancing adaptation of maize varieties to seasonal changes in the length of a day (photoperiod). For identifying the genetic controls underlying this adaptation at different development stages in maize, a set of 207 recombinant inbred lines derived from a temperate and a tropical inbred line cross was evaluated for leaf number and seedling or plant height at different developmental stages in a long-day environment. The results showed there was apparent difference in the average of leaf number and plant height for two parents. Leaf number and seedling height of the parent CML288 were less than those of Huangzao 4 at the beginning of plant development tested, but were more than those of Huangzao 4 at the later developmental stages. There was significant difference in the traits at the tested developmental stages for F7 recombinant inbred lines. The unconditional and conditional QTLs for these traits were detected using genetic linkage maps constructed by 237 SSR markers with a total length of 1753.6 cM and an average space between two markers of 7.4 cM, and composite interval mapping (CIM). Eleven and twenty QTLs were detected for leaf number and plant height, respectively. But there was no effect of conditional QTL at all the tested developmental stages. The conditional and unconditional QTLs for leaf number and plant or seedling height were mapped on chromosomes 1, 9 and 10. Especially, the QTLs located on chromosome 10 (near to umc1873) were for two traits at the later developmental stages, accounting for 4.34–25.74% and 10.02–22.75% of total phenotypic variation by single conditional and unconditional QTL, respectively. These results showed that these regions might encompass some crucial candidate genes controlling photoperiod sensitivity.

Key words: Maize, Photoperiod sensitivity, QTL, Developmental quantitative inheritance

[1] Piperno D R, Flannery K V. The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci USA, 2001, 98: 2101-2103
[2] Gouesnard B, Rebourg C, Welcker C, Charcosset A. Analysis of photoperiod sensitivity within a collection of tropical maize populations. Genet Resour Crop Evol, 2002, 49: 471-481
[3] Holland J B, Goodman M M. Combining ability of tropical maize accessions with U.S. germplasm. Crop Sci, 1995, 35: 767-776

[4] Chen Y-H(陈彦惠), Wu L-C(吴连成), Wu J-Y(吴建宇). Identification of tropical, subtropical populations of maize in different ecological conditions of two latitudes. Sci Agric Sin (中国农业科学), 2000, 33(1): 40-48 (in Chinese with English abstract)

[5] Chen Y-H(陈彦惠), Wang L-M(王利明), Dai J-R(戴景瑞). Potential of germplasm improvement using tropical, subtropical inbred lines for Chinese temperate germplasms of maize. J China Agric Univ (中国农业大学学报), 2000, 5(1): 50-57 (in Chinese with English abstract)

[6] Zhang S-H(张世煌), Shi D-Q(石德权), Xu J-S(徐家舜), Kang J-W(康继伟), Wang L-M(汪黎明), Yang Y-F(杨引福). Effects of mass selection on the adaptive improvement of exotic quality protein maize populations: II. Correlated responses. Acta Agron Sin (作物学报), 1995, 21(5): 513-519 (in Chinese with English abstract)

[7] Zhang S-H(张世煌), Shi D-Q(石德权), Xu J-S(徐家舜), Yang Y-F(杨引福),Kang J-W(康继伟), Wang L-M(汪黎明). Effects of mass selection on the adaptive improvement of exotic quality protein maize populations: I. Direct response to selection for early silking. Acta Agron Sin (作物学报), 1995, 21(3): 271-280 (in Chinese with English abstract)
[8] Ellis R H, Sumerfield R J, Edmeades G O. Photoperiod, temperature, and the interval from tassel initiation to emergence of maize. Crop Sci, 1992, 32: 398-403

[9] Ellis R H, Sumerfield R J, Edmeades G O. Photoperiod, temperature, and the interval from sowing initiation to emergence of maize. Crop Sci, 1992, 32: 1225-1232

[10] Koester R P, Sisco P H, Stuber C W. Identification of quantitative trait loci controlling days to flowering and plant height in two near-isogenic lines of maize. Crop Sci, 1993, 33: 1209-1216

[11] Aitken Y. The early maturing character in maize Zea-mays in relation to temperature and photoperiod. Zeitschrift fuer Ackerund Pflanzenbau, 1980, 149: 89-106

[12] Russell W K, Stuber C W. Effects of photoperiod and temperatures on the duration of vegetative growth in maize. Crop Sci, 1983, 23: 847-850
[13] Warrington I J, Kanemasu E T. Corn growth-response to temperature and photoperiod. 3. Leaf number. Agron J, 1983, 75: 762-766

[14] Veldboom L, Lee M, Woodman W L. Molecular marker-facilitated studies in an elite maize population: 1. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet, 1994, 88: 7-16

[15] Wang C L, Cheng F F, Sun Z H. Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor Appl Genet, 2008, 117: 1129-1139

[16] Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468

[17] Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141: 1633-1639

[18] Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acids Res, 1991, 19: 1349

[19] Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln E S, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181

[20] Huang H(黄海), Luo Y-F(罗友丰), Chen Z-Y(陈志英). SPSS10.0 for Windows statistical analysis (SPSS10.0 for Windows统计分析). Beijing: Posts & Telecom Press, 2001. pp 19-395 (in Chinese)

[21] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963-971

[22] Wang C-L(王翠玲). QTL Mapping and Analysis of Photoperiod Sensitivity Related Traits and Genetic Detection of Plant Height Heterosis in Maize. PhD Dissertation of Henan Agricultural University, 2008 (in Chinese with English abstract)

[23] Moutiq R, Ribaut J M, Edmeades G O, Krakowsky M D, Lee M. Elements of genotype-environment interaction: genetic components of the photoperiod response in maize. In: Kang M S ed. Quantitative Genetics, Genomics and Plant Breeding. New York: CABI, 2002. pp 257-267

[24] Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L. Connected populations for detecting quantitative trait loci and testing for epistasis: An application in maize. Theor Appl Genet, 2006, 113: 206-224

[25] Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004, 168: 2169-2185

[26] Koester R P, Sisco P H, Stuber C W. Identification of quantitative trait loci controlling days to flowering and plant height in two near-isogenic lines of maize. Crop Sci, 1993, 33: 1209-1216

[27] Presterl T, Ouzunova M, Schmidt W, Moller E M, Rober F K, Knaak C, Ernst K, Westhoff P, Geiger H H. Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor Appl Genet, 2007, 114: 1059-1070

[28] Cheng F-F(程芳芳). QTL Mapping for the Relevant Traits of Photoperiod Sensitivity in Maize. MS Dissertation of Henan Agricultural University, 2007 (in Chinese with English abstract)

[29] Bouchez A, Hospital F, Causse M, Gallais A, Charcosse A. Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics, 2002, 162: 1945-1959

[30] Jiang C, Edmeades G O, Armstead I, Laffite H R, Hayward M D. Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theor Appl Genet, 1999, 99: 1106-1119

[31] Khairallah M M, Bohn M, Jiang C, Deutsch J A, Jewell D C, Mihm J A, Melchinger A E, Gonzalez-de-Leon D, Hoisington D A. Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed, 1998, 117: 309-318

[32] Ribaut J M, Fracheboud Y, Monneveux P, Banziger M, Vargas M, Jiang C J. Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Mol Breed, 2007, 20: 15-29

[33] Yan J Q, Zhu J, He C X,Benmoussa M, Wu P. Quantitative trait loci analysis for development behavior of tiller number in rice (Oryza sarioa L.). Theor Appl Genet, 1998, 97: 267-274

[34] Liu Z-H(刘宗华), Xie H-L(谢惠玲), Wang C-L(王春丽), Tian G-W(田国伟), Wei X-Y(卫晓轶), Hu Y-M(胡彦民), Cui D-Q(崔党群). QTL analysis of plant height under N-stress and N-input at different stages in maize. Plant Nutr Fert Sci (植物营养与肥料学报), 2008, 14(5): 845-851 (in Chinese with English abstract)
[35] Yan J-B(严建兵), Tang H(汤华), Huang Y-Q(黄宜勤), Zheng Y-L(郑用琏), Li J-S(李建生). Dynamic QTL analysis for plant height in different developing stages in maize. Chin Sci Bull (科学通报), 2003, 48(18): 1959-1964 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!