欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (06): 953-960.doi: 10.3724/SP.J.1006.2010.00953

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦钙调素新亚型TaCaM5的克隆及表达分析

刘新颖1,王晓杰1,**,薛杰1,夏宁1,邓麟1,蔡高磊1,汤春蕾1,魏国荣1,黄丽丽1,康振生1,2,*   

  1. 1 西北农林科技大学植物保护学院, 陕西杨凌 712100; 2 西北农林科技大学 / 陕西省农业分子生物学重点实验室, 陕西杨凌 712100
  • 收稿日期:2010-01-08 修回日期:2010-03-04 出版日期:2010-06-12 网络出版日期:2010-04-20
  • 通讯作者: 康振生, E-mail: kangzs@nwsuaf.edu.cn
  • 基金资助:

    本研究由国家自然科学基金重点项目(30930064),现代农业产业技术体系建设专项资金和高等学校学科创新引智计划资助项目(B07049)资助。

Cloning and Expression Analysis of aNovel Calmodulin Isoform TaCaM5 from Wheat

LIU Xin-Ying1,WANG Xiao-Jie1,**,XIA Ning1,DENG Lin1,CAI Gao-Lei1,TANG Chun-Lei1,WEI Guo-Rong1,HUANG Li-Li1,KANG Zhen-Sheng1,2,*   

  1. 1College of Plant Protection,Northwest A&F University,Yangling 712100,China;2Shaanxi Provincial Key Laboratory of Molecular Biology for Agriculture/Northwest A&F University,Yangling 712100,China
  • Received:2010-01-08 Revised:2010-03-04 Published:2010-06-12 Published online:2010-04-20
  • Contact: KANG Zhen-Sheng,E-mail:kangzs@nwsuaf.edu.cn

摘要:

利用RT-PCR技术,从条锈菌诱导的小麦叶片中分离出一个编码CaM基因的cDNA序列, 经氨基酸序列分析确定其为一个新的小麦CaM亚型,暂被命名为TaCaM5TaCaM5包含一个完整450 bp的开放阅读框,编码149个氨基酸;编码的蛋白不含跨膜区、无信号肽、定位在胞内,具有4EF-hand保守结构域。在目前已知的CaM基因中,TaCaM5与玉米CaM基因的亲缘关系最近,相似性高达97%。该基因在根、茎、叶等组织中均有不同程度的表达;并且受条锈菌诱导表达,在非亲和组合与亲和组合中,分别在接种后6 h24 h表达量最高。外源植物激素脱落酸、茉莉酸甲酯和乙烯诱导TaCaM5上调表达,水杨酸诱导其下调表达。TaCaM5在机械伤害、干旱和低温条件下表达量上升,在高盐环境下表达量降低。表明TaCaM5可能通过茉莉酸和乙烯等信号途径参与小麦对条锈菌的防御反应,同时参与机械伤害、低温和干旱环境下的Ca2+-CaM信号转导途径。

关键词: 小麦条锈病, 钙调素亚型, 非生物胁迫, 实时荧光定量RT-PCR

Abstract:

Calmodulin is a ubiquitous transducer of calcium signals in eukaryotes. It mediates a lot of cellular processes, such as transcription, cytoskeletal organization and motility, and amino acid metabolism. In diploid plant species, several isoforms of calmodulin have been described. A novel CaM gene was isolated from cDNA library of wheat leaves infected by Puccinia striiformis f. sp. tritici through RT-PCR approach. The gene was tentatively designated as TaCaM5 and encoded a novel CaM isoform based on protein sequence analysis. The open reading frame of TaCaM5 was 450 bp in length and 149 amino acids were encoded with four conserved EF-hand domains. TaCaM5, in which transmembrane domain or signal peptide sequence was absent, was predicted existing in cytoplasm. The amino acid sequence of TaCaM5 shares 97% identify with ZmCaM from Zea mays. TaCaM5 expressed differently in the wheat leaf, stem, and root. Challenged by stripe rust fungus(Puccinia striiformis f. sp. tritici), TaCaM5 was induced by this fungus in both incompatible and compatible interactions, with the maximal expression at 6 h and 24 h post inoculation respectively. TaCaM5 was up-regualted by exogenous abscisic acid, ethylene and jasmonic acid and down-regulated by salicylic acid. TaCaM5 was obviously up-regulated by various abiotic stresses, such as low temperature, mechanical wound, and drought. However, high salinity stress could not induce the expression of TaCaM5. These results suggest that TaCaM5 is probably involved in regulating the host defence responses through ethylene and jasmonic acid pathways, and also participate in Ca2+-CaM signal transmission pathways under mechanical wound, low temperature, and drought conditions.

Key words: Wheat Stripe rust, CaM isoform, Abiotic stress, qRT-PCR

[1] Chen X M. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol, 2005, 27: 314–337

[2] Greenberg J T, Yao N. The role and regulation of programmed cell death in plant pathogen interactions. Cellular Microbiol, 2004, 6: 201–211

[3] Heath M C. Hypersensitive response related death. Plant Mol Biol, 2000, 44: 321–334

[4] Zielinski R E. Calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 697–725

[5] Snedden W A, Fromm H. Calmodulin, calomdulin-relate dproteins and plant responses to the environment. Trends Plant Sci, 1998, 3: 299–204

[6] Ling V, Perera I Y, Zielinski R E. Primary structures of Arabidopsis calmodulin isoforms deduced from the sequences of cDNA clones. Plant Physiol, 1991, 96: 1196–1202

[7] Perera I Y, Zielinski R E. Structure and expression of the Arabidopsis CaM-3 calmodulin gene. Plant Mol Biol, 1992, 19: 649–664

[9] Zielinski R E. Characterization of three new members of the Arabidopsis thaliana calmodulin gene family: conserved and highly diverged members of the gene family functionally complement a yeast calmodulin null. Planta, 2002, 214: 446–455

[12] Yang T, Segal G, Abbo S, Feldman M, Fromm H. Characterization of the calmodulin gene family in wheat: structure, chromosomal location, and evolutionary aspects. Mol Gen Genet, 1996, 252: 684–694

[13] Griess E A, Igloi G L, Feix G. Isolation and sequence comparison of a maize calmodulin cDNA. Plant Physiol, 1994, 104: 1467–1468

[14] Duval F D, Renard M, Jaquinod M, Biou V, Montrichard F, Macherel D. Differential expression and functional analysis of three calmodulin isoforms in germinating pea (Pisum sativum L.) seeds. Plant J, 2002, 32: 481–493

[15] Bohnert H J, Jensen R G. Strategies for engineering water stress tolerance in plants. Trends Biotechnol, 1996, 14: 89–97

[16] Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water stress response. Plant Physiol, 1997, 115: 327–334

[18] Zhang H B, Zhang D B, Chan J, Yang Y H, Huang Z J, Huang D F, Wang X C, Huang R F. Tomato stress responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralatonia solanacearum. Plant Mol Biol, 2004, 55: 825–834

[19] Kang Z-S(康振生), Li Z-Q(李振岐). Discovery of pathogenic isolates of stripe rust on cultivar Lovrin 10 at normal temperature. J Northwest Agric Coll (西北农学院学报), 1984, 12(4): 18–28 (in Chinese with English abstract)

[20]Yang T, Lev-Yadun S, Feldman M, Fromm H. Developmentally regulated organ-, tissue-, and cell-specific expression of calmodulin genes in common wheat. Plant Mol Biol, 1998, 37: 109–120

[21] Heo W D, Lee S H, Kim M C, Kim J C, Chung W S, Chun H J, Lee K J, Park C Y, Park H C, Choi J Y, Cho M J. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci USA, 1999, 96: 766–771

[23] Annemart K, Pieterse C M. Cross Talk in defense signaling. Plant Physiol, 2008, 146: 839–844

[24] Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamagauchi-Shinozaki K, Shinozaki K. Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol, 2006, 9: 436–442

[25] Ito T, Hirano M, Akama K, Shimura Y, Okada K. Touch inducible genes for calmodulin and a calmodulin-related protein are located in tandem on a chromosome of Arabidopsis thaliana. Plant Cell Physiol, 1995, 36: 1369–1373

[26] Sha Q(沙琴), Jiang M-Y(蒋明义), Lin F(林凡). The expression of calmodulin genes induced by water stress is associated with ABA and H2O2. J Nanjing Agricl Univ (南京农业大学学报), 2009, 32(3): 52–57 (in Chinese with English abstract)

[27] Yang T, Poovaiah B W. Calcium/calmodulin-mediated signal network in plants Trends Plant Sci, 2003, 8: 505–512

[28] Du L, Poovaiah B W. Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature, 2005, 437: 741–745

[29] Liu M(刘曼), Mao G-H(毛国红), Sun D-Y(孙大业). Calmodulin isoforms in plants. Plant Physiol Comm (植物生理通讯), 2005, 41(1): 1–5 (in Chinese)
[1] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[2] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[3] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[4] 赵旭阳, 姚方杰, 龙黎, 王昱琦, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 青藏春冬麦区93份小麦地方种质条锈病抗性评价及抗病基因分子鉴定[J]. 作物学报, 2021, 47(10): 2053-2063.
[5] 白宗璠,竞霞,张腾,董莹莹. MDBPSO算法优化的全波段光谱数据协同冠层SIF监测小麦条锈病[J]. 作物学报, 2020, 46(8): 1248-1257.
[6] 贾小霞,齐恩芳,刘石,文国宏,马胜,李建武,黄伟. AtDREB1A基因过量表达对马铃薯生长及抗非生物胁迫基因表达的影响[J]. 作物学报, 2019, 45(8): 1166-1175.
[7] 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016.
[8] 殷龙飞,王朝阳,吴忠义,张中保,于荣. 玉米ZmGRAS31基因的克隆及功能研究[J]. 作物学报, 2019, 45(7): 1029-1037.
[9] 柯丹霞,彭昆鹏,张孟珂,贾妍,王净净. 大豆GmHDL57基因的克隆及抗盐功能鉴定[J]. 作物学报, 2018, 44(9): 1347-1356.
[10] 曹红利,王璐,钱文俊,郝心愿,杨亚军,王新超. 茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应[J]. 作物学报, 2017, 43(07): 1012-1020.
[11] 苏亚春,王竹青,李竹,刘峰,许莉萍,阙友雄,戴明剑,陈允浩. 甘蔗过氧化物酶基因ScPOD02的克隆与功能鉴定[J]. 作物学报, 2017, 43(04): 510-521.
[12] 高巍**,刘会利**,田新权,张慧,宋洁,杨勇,龙璐,宋纯鹏*. 海岛棉转录因子基因GbMYB60的克隆、表达及其抗逆性分析[J]. 作物学报, 2016, 42(09): 1342-1351.
[13] 王婷婷,丛亚辉,柳聚阁,王宁帅,琴李艳,盖钧镒. 大豆中一个WRKY28-like基因的克隆与功能分析[J]. 作物学报, 2016, 42(04): 469-481.
[14] 姚晓华,吴昆仑*. 青稞脂质转运蛋白基因blt4.9的克隆及其对非生物胁迫的响应[J]. 作物学报, 2016, 42(03): 399-406.
[15] 原换换,孙广华,闫蕾,郭林,樊小聪,肖阳,孟凡华,宋梅芳,詹克慧,杨青华,杨建平. 玉米ZmPP6C基因的克隆及其响应光质和胁迫处理的表达模式分析[J]. 作物学报, 2016, 42(02): 170-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!