作物学报 ›› 2010, Vol. 36 ›› Issue (06): 953-960.doi: 10.3724/SP.J.1006.2010.00953
刘新颖1,王晓杰1,**,薛杰1,夏宁1,邓麟1,蔡高磊1,汤春蕾1,魏国荣1,黄丽丽1,康振生1,2,*
LIU Xin-Ying1,WANG Xiao-Jie1,**,XIA Ning1,DENG Lin1,CAI Gao-Lei1,TANG Chun-Lei1,WEI Guo-Rong1,HUANG Li-Li1,KANG Zhen-Sheng1,2,*
摘要:
利用RT-PCR技术,从条锈菌诱导的小麦叶片中分离出一个编码CaM基因的cDNA序列, 经氨基酸序列分析确定其为一个新的小麦CaM亚型,暂被命名为TaCaM5。TaCaM5包含一个完整450 bp的开放阅读框,编码149个氨基酸;编码的蛋白不含跨膜区、无信号肽、定位在胞内,具有4个EF-hand保守结构域。在目前已知的CaM基因中,TaCaM5与玉米CaM基因的亲缘关系最近,相似性高达97%。该基因在根、茎、叶等组织中均有不同程度的表达;并且受条锈菌诱导表达,在非亲和组合与亲和组合中,分别在接种后6 h和24 h表达量最高。外源植物激素脱落酸、茉莉酸甲酯和乙烯诱导TaCaM5上调表达,水杨酸诱导其下调表达。TaCaM5在机械伤害、干旱和低温条件下表达量上升,在高盐环境下表达量降低。表明TaCaM5可能通过茉莉酸和乙烯等信号途径参与小麦对条锈菌的防御反应,同时参与机械伤害、低温和干旱环境下的Ca2+-CaM信号转导途径。
[1] Chen X M. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol, 2005, 27: 314–337 [2] Greenberg J T, Yao N. The role and regulation of programmed cell death in plant pathogen interactions. Cellular Microbiol, 2004, 6: 201–211 [3] Heath M C. Hypersensitive response related death. Plant Mol Biol, 2000, 44: 321–334 [4] Zielinski R E. Calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 697–725 [5] Snedden W A, Fromm H. Calmodulin, calomdulin-relate dproteins and plant responses to the environment. Trends Plant Sci, 1998, 3: 299–204 [6] Ling V, Perera I Y, Zielinski R E. Primary structures of Arabidopsis calmodulin isoforms deduced from the sequences of cDNA clones. Plant Physiol, 1991, 96: 1196–1202 [7] Perera I Y, Zielinski R E. Structure and expression of the Arabidopsis CaM-3 calmodulin gene. Plant Mol Biol, 1992, 19: 649–664 [8] Gawienowski M C, Szymanski D, Perera I Y, Zielinski R E. Calmodulin isoforms in Arabidopsis encoded by multiple divergent mRNAs. Plant Mol Biol, 1993, 22: 215–225 [9] Zielinski R E. Characterization of three new members of the Arabidopsis thaliana calmodulin gene family: conserved and highly diverged members of the gene family functionally complement a yeast calmodulin null. Planta, 2002, 214: 446–455 [10] Takezawa D, Liu Z H, An G, Poovaiah B W. Calmodulin gene family in potato: developmental and touch-induced expression of mRNA enconding a novel isoform. Plant Mol Biol, 1995, 27: 693–703 [11] Lee S H, Kim J C, Lee M S, Heo W D, Seo H Y, Yoon H W, Hong J C, Lee S Y, Bahk J D, Hwang I. Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. J Biol Chem, 1995, 270: 21806–21812 [12] Yang T, Segal G, Abbo S, Feldman M, Fromm H. Characterization of the calmodulin gene family in wheat: structure, chromosomal location, and evolutionary aspects. Mol Gen Genet, 1996, 252: 684–694 [13] Griess E A, Igloi G L, Feix G. Isolation and sequence comparison of a maize calmodulin cDNA. Plant Physiol, 1994, 104: 1467–1468 [14] Duval F D, Renard M, Jaquinod M, Biou V, Montrichard F, Macherel D. Differential expression and functional analysis of three calmodulin isoforms in germinating pea (Pisum sativum L.) seeds. Plant J, 2002, 32: 481–493 [15] Bohnert H J, Jensen R G. Strategies for engineering water stress tolerance in plants. Trends Biotechnol, 1996, 14: 89–97 [16] Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water stress response. Plant Physiol, 1997, 115: 327–334 [17] Bouché N, Yellin A, Snedden WA, Fromm H. Plant specific calmodulin binding proteins. Annu Rev Plant Biol, 2005, 56: 435–466 [18] Zhang H B, Zhang D B, Chan J, Yang Y H, Huang Z J, Huang D F, Wang X C, Huang R F. Tomato stress responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralatonia solanacearum. Plant Mol Biol, 2004, 55: 825–834 [19] Kang Z-S(康振生), Li Z-Q(李振岐). Discovery of pathogenic isolates of stripe rust on cultivar Lovrin 10 at normal temperature. J Northwest Agric Coll (西北农学院学报), 1984, 12(4): 18–28 (in Chinese with English abstract) [20]Yang T, Lev-Yadun S, Feldman M, Fromm H. Developmentally regulated organ-, tissue-, and cell-specific expression of calmodulin genes in common wheat. Plant Mol Biol, 1998, 37: 109–120 [21] Heo W D, Lee S H, Kim M C, Kim J C, Chung W S, Chun H J, Lee K J, Park C Y, Park H C, Choi J Y, Cho M J. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci USA, 1999, 96: 766–771 [22] Yamakawa H, Mitsuhara I, Ito N, Seo S, Kamada H, Ohashi Y. Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant. Eur J Biochem, 2001, 268: 3916–3929 [23] Annemart K, Pieterse C M. Cross Talk in defense signaling. Plant Physiol, 2008, 146: 839–844 [24] Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamagauchi-Shinozaki K, Shinozaki K. Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol, 2006, 9: 436–442 [25] Ito T, Hirano M, Akama K, Shimura Y, Okada K. Touch inducible genes for calmodulin and a calmodulin-related protein are located in tandem on a chromosome of Arabidopsis thaliana. Plant Cell Physiol, 1995, 36: 1369–1373 [26] Sha Q(沙琴), Jiang M-Y(蒋明义), Lin F(林凡). The expression of calmodulin genes induced by water stress is associated with ABA and H2O2. J Nanjing Agricl Univ (南京农业大学学报), 2009, 32(3): 52–57 (in Chinese with English abstract) [27] Yang T, Poovaiah B W. Calcium/calmodulin-mediated signal network in plants Trends Plant Sci, 2003, 8: 505–512 [28] Du L, Poovaiah B W. Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature, 2005, 437: 741–745 [29] Liu M(刘曼), Mao G-H(毛国红), Sun D-Y(孙大业). Calmodulin isoforms in plants. Plant Physiol Comm (植物生理通讯), 2005, 41(1): 1–5 (in Chinese) |
[1] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[2] | 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323. |
[3] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[4] | 赵旭阳, 姚方杰, 龙黎, 王昱琦, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 青藏春冬麦区93份小麦地方种质条锈病抗性评价及抗病基因分子鉴定[J]. 作物学报, 2021, 47(10): 2053-2063. |
[5] | 白宗璠,竞霞,张腾,董莹莹. MDBPSO算法优化的全波段光谱数据协同冠层SIF监测小麦条锈病[J]. 作物学报, 2020, 46(8): 1248-1257. |
[6] | 贾小霞,齐恩芳,刘石,文国宏,马胜,李建武,黄伟. AtDREB1A基因过量表达对马铃薯生长及抗非生物胁迫基因表达的影响[J]. 作物学报, 2019, 45(8): 1166-1175. |
[7] | 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016. |
[8] | 殷龙飞,王朝阳,吴忠义,张中保,于荣. 玉米ZmGRAS31基因的克隆及功能研究[J]. 作物学报, 2019, 45(7): 1029-1037. |
[9] | 柯丹霞,彭昆鹏,张孟珂,贾妍,王净净. 大豆GmHDL57基因的克隆及抗盐功能鉴定[J]. 作物学报, 2018, 44(9): 1347-1356. |
[10] | 曹红利,王璐,钱文俊,郝心愿,杨亚军,王新超. 茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应[J]. 作物学报, 2017, 43(07): 1012-1020. |
[11] | 苏亚春,王竹青,李竹,刘峰,许莉萍,阙友雄,戴明剑,陈允浩. 甘蔗过氧化物酶基因ScPOD02的克隆与功能鉴定[J]. 作物学报, 2017, 43(04): 510-521. |
[12] | 高巍**,刘会利**,田新权,张慧,宋洁,杨勇,龙璐,宋纯鹏*. 海岛棉转录因子基因GbMYB60的克隆、表达及其抗逆性分析[J]. 作物学报, 2016, 42(09): 1342-1351. |
[13] | 王婷婷,丛亚辉,柳聚阁,王宁帅,琴李艳,盖钧镒. 大豆中一个WRKY28-like基因的克隆与功能分析[J]. 作物学报, 2016, 42(04): 469-481. |
[14] | 姚晓华,吴昆仑*. 青稞脂质转运蛋白基因blt4.9的克隆及其对非生物胁迫的响应[J]. 作物学报, 2016, 42(03): 399-406. |
[15] | 原换换,孙广华,闫蕾,郭林,樊小聪,肖阳,孟凡华,宋梅芳,詹克慧,杨青华,杨建平. 玉米ZmPP6C基因的克隆及其响应光质和胁迫处理的表达模式分析[J]. 作物学报, 2016, 42(02): 170-179. |
|