欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (02): 170-179.doi: 10.3724/SP.J.1006.2016.00170

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米ZmPP6C基因的克隆及其响应光质和胁迫处理的表达模式分析

原换换1,2,**,孙广华1,2,**,闫蕾2,郭林2,樊小聪1,2,肖阳3,孟凡华2,宋梅芳2,4,詹克慧1,杨青华1,*,杨建平1,2,*   

  1. 1 河南农业大学农学院 / 河南粮食作物协同创新中心,河南郑州 450002;2 中国农业科学院作物科学研究所,北京 100081;3 中国农业科学院研究生院,北京 100081;4 北京市辐射中心,北京 100875
  • 收稿日期:2015-08-27 修回日期:2015-11-20 出版日期:2016-02-12 网络出版日期:2015-12-07
  • 基金资助:

    北京市自然科学基金(重点)项目(6151002), 国家转基因生物新品种培育重大专项(2014ZX08010-002), 国家自然科学基金项目(31570268, 31170267)和中国农业科学院科技创新工程项目的资助。

Molecular Cloning of ZmPP6C Gene and Its Expression Patterns in Response to Light and Stress Treatments in Maize (Zea mays L.)

YUAN Huan-Huan1,2,**,SUN Guang-Hua1,2,**,YAN Lei 2,GUO Lin2,FAN Xiao-Cong1,2,XIAO Yang3,MENG Fan-Hua2,SONG Mei-Fang2,4,ZHAN Ke-Hui1,YANG Qing-hua1,*, YANG Jian-Ping1,2,*   

  1. 1 College of Agronomy, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 4Beijing Radiation Center, Beijing 100875, China
  • Received:2015-08-27 Revised:2015-11-20 Published:2016-02-12 Published online:2015-12-07
  • Supported by:

    This study was supported by the Natural Science Foundation (6151002), the Major Project of China on New Varieties of GMO Cultivation (2014ZX08010-002), the National Natural Science Foundation of China (31570268, 31170267) and the Agricultural Science and Technology Innovation Program (ASTIP) of CAAS.

摘要:

丝氨酸/苏氨酸蛋白磷酸酶6亚基(catalytic subunits of Ser/Thr protein phosphatase 6, PP6C)是PP6全酶的催化亚基。在模式植物拟南芥中的研究表明,PP6C参与生长素极性运输、脱落酸信号转导和光信号转导途径介导的开花调控。为了明确玉米丝氨酸/苏氨酸蛋白磷酸酶6亚基(ZmPP6C)的蛋白结构特征与同源蛋白间的进化关系,采用RT-PCR方法克隆了ZmPP6C的全长基因。序列分析表明,ZmPP6C开放阅读框为912个核苷酸,编码303个氨基酸残基,包含PP2A的催化亚基PP2Ac结构域;系统进化树分析表明,PP6C蛋白在进化上较为保守,并且与高粱的PP6C蛋白相似性更高。对玉米自交系B73的ZmPP6C基因进行器官特异性表达分析表明,其表达量在成株期叶片中最高,是根中的7.9倍;ZmPP6C能够响应不同光质处理,且受远红光和红光的影响较大;也能响应长日和短日处理,在长日条件下的光照和黑暗阶段各有一个明显的表达高峰,在短日条件下的光照和黑暗阶段分别有2个和3个表达峰值;同时,ZmPP6C还响应高渗透、盐渍和淹水等胁迫处理,出现明显的上调表达。结果表明,ZmPP6C在玉米光信号转导、开花诱导与胁迫应答中发挥重要作用,其分子与生化机制值得进一步探讨。

关键词: 玉米, 丝氨酸/苏氨酸蛋白磷酸酶, 表达模式分析, 光敏色素, 光信号途径, 非生物胁迫

Abstract:

PP6C is the catalytic subunits of Ser/Thr protein phosphatase 6 (PP6) gene, which plays important roles in auxin transport polarity, ABA (abscisic acid) signal transduction, flowering time control though light signaling pathway. To clarify structural characteristics of PP6C protein and the evolution relationships among plant PP6Chomologs, we cloned ZmPP6C gene by RT-PCR. The open reading frame (ORF) of ZmPP6C possesses 912 nucleotides and encodes 303 amino acid residues with one PP2Ac domain (the catalytic subunits of Ser/Thr protein phosphatase 2A). Phylogenetic analysis indicated that ZmPP6C belongs to the same branch with the PP6C of Sorghum bicolor, and shows high similarity to all PP6C proteins from other monocotyledons and dicotyledons. Further quantitative RT-PCR (qRT-PCR) assays indicated that ZmPP6C was highly expressed in leaf and lowly in stem, stamen, pulvinus, sheath, and pedical. ZmPP6C transcription abundances could respond to different light and circadian treatments (both long-day and short-day conditions), especially to the light transitions from the dark to far-red or red light condition. In addition, ZmPP6C transcription abundances were up-regulated by high osmosis, high salt and water logging. Our results suggested that ZmPP6C may be involved in light signaling pathway, flowering time control, and abiotic stress response in maize, and its roles in crop improvement are worthy of more exploration in the future.

Key words: Zea mays, ZmPP6C, Expression patterns, Phytochrome, Light signaling pathway, Abiotic stress

[1] Terol J, Bargues M, Carrasco P, Pérez-Alonso M, Paricio N. Molecular characterization and evolution of the protein phosphatase 2A B’ regulatory subunit family in plants. Plant Physiol, 2002, 129: 808–822



[2] Moorhead G B, Trinkle-Mulcahy L, Ulke-Lemée A. Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol, 2007, 8: 234–244



[3] Cohen P T. Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci, 1997, 22: 245–251



[4] Dai M, Xue Q, Mccray T, Margavage K, Chen F, Lee J H, Nezames C D, Guo L, Terzaghi W, Wan J, Deng X W, Wang H. The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis. Plant Cell, 2013, 25: 517–534



[5] 刘钊, 贾霖, 贾盟, 关明俐, 曹英豪, 刘丽娟, 曹振伟, 李莉云, 刘国振. 水稻PP2Ac类磷酸酶蛋白质在盐胁迫下的表达. 中国农业科学, 2012, 45: 2339–2345



Liu Z, Jia L, Jia M, Guang L M, Cao Y H, Liu L J, Cao Z W, Li L Y, Liu G Z. Expression on profiling of rice PP2Ac type phosphatase proteins in seedlings under salt stressed conditions. Sci Agric Sin, 2012, 45: 2339–2345 (in Chinese with English abstract)



[6] Kim D H, Kang J G, Yang S S, Chung K S, Song P S, Park C M. A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis. Plant Cell, 2002, 14: 3043–3056



[7] Farkas I, Dombrádi V, Miskei M, Szabados L, Koncz C. Arabidopsis PPP family of serine /threonine phosphatases. Trends Plant Sci, 2007, 12: 169–176



[8] Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 1998, 282: 2226–2230



[9] Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson P H. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA, 1998, 95: 15112–15117



[10] Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J, 1998, 17: 6903–6911



[11] Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell, 2002, 108: 661–673



[12] Petrásek J, Mravec J, Bouchard R, Blakeslee J J, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubes M, Covanová M, Dhonukshe P, Skupa P, Benková E, Perry L, Krecek P, Lee OR, Fink G R, Geisler M, Murphy A S, Luschnig C, Zazímalová E, Friml J. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 2006, 312: 914–918



[13] Dai M, Zhang C, Kania U, Chen F, Xue Q, McCray T, Li G, Qin G, Wakeley M, Terzaghi W, Wan J, Zhao Y, Xu J, Friml J, Deng X W, Wang H. A PP6-type phosphatase holoenzyme directly regulates PIN phosphorylation and auxin efflux in Arabidopsis. Plant Cell, 2012, 24: 2497–2514



[14] Mauch-Mani B, Mauch F. The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol, 2005, 8: 409–414



[15] Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17: 3470–3488



[16] Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res, 2011, 124: 509–525



[17] Hauser F, Waadt R, Schroeder J I. Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol, 2011, 21: R346–355



[18] Hattori T, Totsuka M, Hobo T, Kagaya Y, Yamamoto-Toyoda A. Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol, 2002, 43: 136–140



[19] Busk P K, Pagès M. Regulation of abscisic acid induced transcription. Plant Mol Biol, 1998, 37: 425–435



[20] Finkelstein R R, Lynch T J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 2000, 12: 599–609



[21] Lopez-Molina L, Chua N H. A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol, 2000, 41: 541–547



[22] Liu X B, Zhang X Y, Wang Y X, Sui Y Y, Zhang S L, Herbert S J, Ding G. Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China. Plant Soil Environ, 2010, 56: 87–97



[23] Gao Y, Jiang W, Dai Y, Xiao N, Zhang C, Li H, Lu Y, Wu M, Tao X, Deng D, Chen J. A maize phytochrome interacting factor 3 improves drought and salt stress tolerance in rice. Plant Mol Biol, 2015, 87: 413–428



[24] Xu Z S, Ni Z Y, Li Z Y, Li L C, Chen M, Gao D Y, Yu X D, Liu P, Ma Y Z. Isolation and functional characterization of HvDREB1—a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. J Plant Res, 2009, 122: 121–130



[25] Tian S J, Mao X G, Zhang H Y, Chen S S, Zhai C C, Yang S M, Jing R L. Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat. J Exp Bot, 2013, 64: 2063–2080



[26] Liu Z J, Yang X G, Hubbard K G, Lin X M. Maize potential yields and yield gaps in the changing climate of northeast China. Global Change Biol, 2012, 18: 3441–3454



[27] Yang X, Lin E D, Ma S M, Ju H, Guo L P, Xiong W, Li Y, Xu Y L. Adaptation of agriculture to warming in Northeast China. Clim Change, 2007, 84: 45–58



[28] Sun H, Tonks N K. The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem Sci, 1994, 19: 480–485



[29] Hanada M, Ninomiya-Tsuji J, Komaki K, Ohnishi M, Katsura K, Kanamaru R, Matsumoto K, Tamura S. Regulation of the TAK1 signaling pathway by protein phosphatase 2C. J Biol Chem, 2001, 276: 5753–5759



[30] 翁华, 冉亮, 魏群. 植物蛋白磷酸酶及其在植物抗逆中的作用. 植物学通报, 2003, 20: 609–615



Weng H, Ran L, Wei Q. Protein phosphatases and their functions in plant response to environmental stress. Chin Bull Bot, 2003, 20: 609–615 (in Chinese with English abstract)



[31] Rajeevan M S, Ranamukhaarachi D G, Vernon S D, Unger E R. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001, 25: 443–451



[32] Shi Y. Serine/Threonine phosphatases: mechanism through structure. Cell, 2009, 139: 468–484



[33] Fankhauser C, Chory J. Light control of plant development. Annu Rev Cell Dev Biol, 1997, 13: 203–229



[34] Neff M M, Fankhauser C, Chory J. Light: An indicator of time and place. Genes Dev, 2000, 14: 257–271



[35] Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng X W. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell, 2001, 13, 2589–2607



[36] 李潮海, 刘奎. 不同产量水平玉米杂交种生育后期光合效率比较分析. 作物学报, 2002, 28: 379–383



Li C H, Liu K. Analysis of photosynthesis efficiency of maize hybrids with different yield in the later growth stage. Acta Agron Sin, 2002, 28: 379–383 (in Chinese with English abstract)



[37] Smith H. Phytochrome transgenics: functional, ecological and biotechnological applications. Semin Cell Biol. 1994, 5: 315–325



[38] Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol, 2008, 59: 281–311



[39] Li J, Li G, Wang H, Deng X W. Phytochrome signaling mechanisms. America: American Society of Plant Biologists,2011. pp1-26



[40] Quail P H. Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol, 2002, 3: 85–93



[41] 詹克慧, 李志勇, 侯佩, 习雨琳, 肖阳, 孟凡华, 杨建平. 利用修饰光敏色素信号途径进行品种改良的可行性. 中国农业科学, 2012, 45: 3249−3255



Zhan K H, Li Z Y, Hou P, Xi Y L, Xiao Y, Meng F H, Yang J P. A new strategy for crop improvement through modification of phytochrome signaling pathways. Sci Agric Sin, 2012, 45: 3249−3255



[42] Boylan M T, Quil P H. Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell, 1989, 1: 765−773



[43] Nagatani A, Kay S A, Deak M, Chua N H, Furuya M. Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings. Proc Natl Acad Sci USA, 1991, 88: 5207−5211



[44] Garg A K, Sawers R J, Wang H, Kim J K, Walker J M, Brutnell T P, Parthasarathy M V, Vierstra R D, Wu R J. Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta, 2006, 223: 627−636



[45] Thiele A, Herold M, Lenk I, Quail P H, Gatz C. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiology, 1999, 120: 73−815



[46] Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80: 847–857



[47] Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410: 1116–1120



[48] Guo H, Yang H, Mockder T C, Lin C. Regulation of flowering time by Arabidopsis photoreceptors. Science, 1998, 279: 1360–1363



[49] Pineiro R P, Coupland G. The control of flowering time and floral identity in Arabidopsis. Plant Physiol, 1998, 17: 1–8



[50] Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland G. Distinct roles of CONSTANS target genes in reproductive development in Arabidopsis. Science, 2000, 288: 1613–1616



[51] 王翠玲, 程芳芳, 孙朝晖, 库丽霞, 陈晓, 陈彦惠. 玉米光周期敏感性的遗转特性及相关基因的研究进展. 玉米科学, 2008, 16: 11–14



Wang C L, Cheng F F, Sun Z H, Ku L X, Chen X, Chen Y H. Advances in genetic research and related genes of photoperiod sensitivity in maize. J Maize Sci, 2008, 16: 11–14 (in Chinese with English abstract)



[52] 李思远, 陈晓, 王新涛, 陈彦惠. 玉米光周期敏感类Hd6基因的克隆和实时定量表达分析. 作物学报, 2008, 34: 713−717



Li S Y, Chen X, Wang X T, Chen Y H. Clone and quantitative analysis by real-time RT-PCR of photoperiod sensitive gene Hd6-like in maize. Acta Agron Sin, 2008, 34: 713−717 (in Chinese with English abstract)



[53] Yu R M, Zhou Y, Xu Z F, Chye M L, Kong R Y. Two genes encoding protein phosphatase 2A catalytic subunits are differentially expressed in rice. Plant Mol Biol, 2003, 51: 295–311

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!