欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1649-1656.doi: 10.3724/SP.J.1006.2010.01649

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

中国小麦微核心种质及地方品种籽粒休眠特性的分子标记鉴定

张海萍1,常成1,*,游光霞2,张秀英2,闫长生2,肖世和2,司红起1,卢杰1,马传喜1,*   

  1. 1安徽农业大学农学院/农业部小麦区域技术创新中心/安徽省小麦技术产业工程研究中心,安徽合肥230036;2中国农业科学院作物科学研究所/国家小麦改良中心/国家农作物基因资源与基因改良重大科学工程,北京100081
  • 收稿日期:2010-03-19 修回日期:2010-05-29 出版日期:2010-10-12 网络出版日期:2010-08-04
  • 通讯作者: 常成, E-mail: changtgw@126.com; 马传喜, E-mail: machuanxi@yahoo.cn
  • 基金资助:

    本研究由国家科技支撑计划项目(2006BAD01A02),农业部公益性行业科研专项(nyhyzx07-002),安徽省自然科学研究项目(KJ2008B211),农业部农业结构调整重大技术专项(06-02-03B)和安徽农业大学青年基金重点项目资助。

Identification of Molecular Markers Associated with Seed Dormancy in Mini Core Collections of Chinese Wheat and Landraces

ZHANG Hai-Ping1,CHANG Cheng1*,YU Guang-Xia2,ZHANG Xiu-Ying2,YAN Chang-Sheng2,XIAO Shi-He2,SI Hong-Qi1,LU Jie1,MA Chuan-Xi1*   

  • Received:2010-03-19 Revised:2010-05-29 Published:2010-10-12 Published online:2010-08-04
  • Contact: CHANG Cheng,E-mail:changtgw@126.com;MA Chuan-xin,E-mail:machuanxi@yahoo.cn

摘要: 为探索我国小麦微核心种质及地方品种籽粒休眠的遗传基础,利用已报道的4个3AS上的SSR标记(Xbarc57Xbarc294Xbarc310Xbarc321)和1个3BL上的Viviparous-1基因标记Vp1-b2对107份我国小麦微核心种质及31份地方品种进行籽粒休眠的分子标记鉴定。结果表明,5个分子标记在试验材料中表现出丰富的等位变异,具有5~6种等位类型,与籽粒萌芽指数(GI)密切相关。根据一般线性模型分析结果,各位点的等位变异显著影响籽粒休眠,其中Vp1-b2Xbarc294对籽粒休眠作用较其他标记大,可分别解释65.8%和61.2% 的表型变异;其次是Xbarc310 (56.3%)和Xbarc57 (55.8%),最小的是Xbarc294(53.3%)。而5个标记联合可解释95.9% 的性状变异,其次是Vp1-b2Xbarc294的组合(89.1%),解释变异最小的标记组合是 Vp1-b2和Xbarc321 (79.4%)。5个分子标记即可解释籽粒休眠的绝大部分表型变异,说明我国小麦微核心种质及地方品种籽粒休眠特性受3AS和3BL上的2个主效基因控制。

Abstract: Seed dormancy evaluated by germination index (GI) is often regarded as a main and pivotal component of observed genetic variation for pre-harvest sprouting (PHS). Improving seed dormancy can decrease or avoid PHS damage to wheat (Triticum aestivum L.) before harvest, but it is a complicated trait controlled by multi-genes and influenced by many environmental factors. Because seed dormancy is difficult to be accurately evaluated under field condition, molecular markers will play an important role in dormancy evaluation. In this study, four SSR markers (Xbarc57, Xbarc294, Xbarc310, and Xbarc321) on the short arm of chromosome 3A and a gene-based marker (Vp1-b2) derived from Vp-1B on 3BL were used for genotyping 138 mini core collections of Chinese wheat and landraces. The results indicated that rich alleles occurred in the five markers, and most were significantly correlated with GI value. Based on general linear model, the five markers were significantly associated with seed dormancy. Markers Vp1-b2 and Xbarc294 had stronger effects on seed dormancy than other markers, accounting for 65.8% and 61.2% of seed dormancy variation, respectively. Marker combination could promote the percentage of phenotypic variation explained, of which the combination of five markers estimated 95.9% of the GI variation, followed by the combination of Vp1-b2 and Xbarc294 (89.1%), and the combination of Vp1-b2 and Xbarc321 had the smallest estimation of GI variation (79.4%). These results indicate that seed dormancy is mainly attributed to loci Vp1-b2 and Xbarc294 on 3AS and 3BL in the 138 genotypes, and the evaluation accuracy can be enhanced by jointly application of the total five markers in markers-assisted selection.

Key words: Triticum aestivum L., Seed dormancy, Molecular marker, Mini core collections of Chinese wheat

[1]Xiao S H, Zhang X Y, Yan C S, Hai L. Germplasm improvement for pre-harvest sprouting resistance in Chinese white-grained wheat: An overview of the current strategy. Euphytica, 2002, 126: 35-38
[2]Groos C, Gay G, Perretant M R, Gervais L, Bernard M, Dedryver F, Charmet G. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white×red grain bread wheat cross. Theor Appl Genet, 2002, 104: 39-47
[3]Watanabe N, Ikebata N. The effects of homologous group 3 chromosomes on grain color dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica, 2000, 115:215-220
[4]Torada A, Amano Y. Effect of seed coat color on seed dormancy in different environments. Euphytica, 2002, 126: 99-105
[5]Himi E, Mares D J, Yanagisawa A, Noda K. Effect of grain color gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat. J Exp Bot, 2002, 53: 1569-1574
[6]Roy J K, Prasad M, Varshney R K, Balyan H S, Blake T K, Dhaliwal H S, Singh H, Edwards K J, Gupta P K. Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with pre-harvest sprouting tolerance. Theor Appl Genet, 1999, 99: 336-340
[7]Flintham J E. Different genetic components control coat imposed and embryo-imposed dormancy in wheat. Seed Sci Res, 2000, 10: 43-50
[8]Kato K, Nakamura W, Tabiki T, Miura H, Sawada S. Detection of loci controlling seed dormancy in group 4 chromosomes of wheat and comparative mapping with rice and barley genomes. Theor Appl Genet, 2001, 102: 980-985
[9]Kulwal P L, Singh R, Balyan H S, Gupta P K. Genetic basis of pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses in bread wheat. Funct Integr Genomics, 2004, 4: 94-101
[10]Mares D, Mrva K, Cheong J, Williams K, Watson B, Storlie E, Sutherland M, Zou Y. A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor Appl Genet, 2005, 111: 1357-1364
[11]Mori M, Uchino N, Chono M, Kato K, Miura H. Mapping QTLs for grain dormancy on wheat chromosome 3A and group 4 chromosomes, and their combined effect. Theor Appl Genet, 2005, 110: 1315-1323
[12]Lohwasser U, Röder M S, Börner A. QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.). Euphytica, 2005, 143: 247-249
[13]Tan M K, Sharp P J, Lu M Q, Hows N. Genetics of grain dormancy in a white wheat. Aust J Agric Res, 2006, 57: 1157-1165
[14]Chen C X, Cai B, Bai G H. A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Mol Breed, 2008, 21: 351-358
[15]Ogbonnaya F C, Imtiaz M, Ye G, Hearnden P R, Hernandez E, Eastwood R F, Van Ginkel M, Shorter S C, Winchester J M. Genetic and QTL analyses of seed dormancy and pre-harvest sprouting resistance in the wheat germplasm CN10955. Theor Appl Genet, 2008, 116: 891-902
[16]Munkvold J D, Tanaka J, Benscher D, Sorrells M E. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theor Appl Genet, 2009, 119: 1223-1235
[17]Mohan A, Kulwal P, Ravinder S, Vinay K, Reyazul R M, Kumar J, Prasad M, Balyan H S, Gupta P K. Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat. Euphytica, 2009, 168: 319-329
[18]Osa M, Kato K, Mori M, Shindo C, Torada A, Miura H. Mapping QTLs for seed dormancy and the Vp1 homologue on chromosome 3A in wheat. Theor Appl Genet, 2003, 106: 1491-1496
[19]Kottearachchi N S, Uchino N, Kato K, Miura H. Increased grain dormancy in white-grained wheat by introgression of pre-harvest sprouting tolerance QTLs. Euphytica, 2006, 152: 421-428
[20]Zhang X Q, Li C D, Tay A, Lance R, Mares D, Cheong J, Cakir M, Ma J H, Appels R. A new PCR-based marker on chromosome 4AL for resistance to pre-harvest sprouting in wheat (Triticum aestivum L.). Mol Breed, 2008, 22: 227-236
[21]Liu S B, Cai S B, Robert G, Chen C X, Bai G H. Quantitative trait loci for resistance to pre-harvest sprouting in US hard white winter wheat Rio Blanco. Theor Appl Genet, 2008, 117: 691-699
[22]Fofana B, Humphreys D G, Rasul G, Cloutier S, Brûlé-Babel A, Woods S, Lukow O M, Somers D J. Mapping quantitative trait loci controlling pre-harvest sprouting resistance in a red × white seeded spring wheat. Euphytica, 2009, 165: 509-521
[23]Rasul G, Humphreys D G, Brule-Babel A, McCartney C A, Knox R E, DePauw R M, Somers D J. Mapping QTLs for pre-harvest sprouting traits in the spring wheat cross ‘RL4452/AC Domain’. Euphytica, 2009, 168: 363-378
[24]Yang Y, Zhao X L, Xia L Q, Chen X M, Xia X C, Yu Z, He Z H, Röder M. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats. Theor Appl Genet, 2007, 115: 971-980
[25]Xia L Q, Ganal M W, Shewry P R, He Z H, Yang Y, Röder M S. Exploiting the diversity of Viviparous-1 gene associated with pre-harvest sprouting tolerance in European wheat varieties. Euphytica, 2008, 159: 411-417
[26]Chang C, Feng J M, Si H Q, Yin B, Zhang H P, Ma C X. Validating a novel allele of viviparous-1 (Vp-1Bf) associated with high seed dormancy of Chinese wheat landrace, Wanxianbaimaizi. Mol Breed, 2010, 25: 517-525
[27]Chang C, Zhang H P, Feng J M, Yin B, Si H Q, Ma C X. Identifying alleles of Viviparous-1B associated with pre-harvest sprouting in micro-core collections of Chinese wheat germplasm. Mol Breed, 2010, 25: 481-490
[28]Yang Y(杨燕), Zhao X-L(赵献林), Zhang Y(张勇), Chen X-M(陈新民), He Z-H(何中虎), Yu Z(于卓), Xia L-Q(夏兰琴). Evaluation and validation of four molecular markers associated with pre-harvest sprouting tolerance in Chinese wheats. Acta Agron Sin (作物学报), 2008, 34(1): 17-24 (in Chinese with English abstract)
[29]Zhang H-P(张海萍), Feng J-M(冯继明), Yin B(殷波), Chang C(常成), Si H-Q(司红起), Ma C-X(马传喜). Detection and validation of molecular marker associated with pre-harvest sprouting resistance in Chinese wheat. Mol Plant Breed (分子植物育种), 2009, 7(1): 45-50 (in Chinese with English abstract)
[30]Zhang H-P(张海萍), Chang C(常成), Zhang X-Y(张秀英), Yan C-S(闫长生), Xiao S-H(肖世和). Isolation and expression analysis of dehydrin gene involved in ABA-regulated seed embryo dormancy in wheat. Mol Plant Breed (分子植物育种), 2008, 6(6): 1175-1181 (in Chinese with English abstract)
[31]Zhang X-Y(张学勇), Pang B-S(庞斌双), You G-X(游光霞), Wang L-F(王兰芬), Jia J-Z(贾继增), Dong Y-C(董玉琛). Allelic variation and genetic diversity at Glu-1 loci in Chinese wheat (Triticum aestivum L.) germplasms. Sci Agric Sin (中国农业科学), 2002, 35(11): 1302-1310 (in Chinese with English abstract)
[32]Zhang H-P (张海萍), Chang C(常成), Feng J-M(冯继明), Yin B(殷波), Si H-Q(司红起), Ma C-X(马传喜). Detecting and identifying polymorphism of viviparous-B1 gene and its seed dormancy in mini-core collection of Chinese wheat varieties. J Agric Biotechnol (农业生物技术学报), 2009, l7(4): 690-694 (in Chinese with English abstract)
[33]Wang X-B(王晓波), Ma C-X(马传喜), Si H-Q(司红起), Qiao Y-Q(乔玉强), He X-F(何贤芳). Allelic variation of PPO genes in Chinese wheat micro-core collections. Sci Agric Sin (中国农业科学), 2009, 42(1): 28-35 (in Chinese with English abstract)
[34]Deng W-H(邓万洪), Yan B-J(晏本菊), Ren Z-L(任正隆). Application of molecular markers of Wx gene to screen partial Wx Wheat. J Triticeae Crops (麦类作物学报), 2007, 27(6): 982-998 (in Chinese with English abstract)
[35]Kang H W, Cho Y G, Yoon U H. A rapid DNA extraction method for RFLP and PCR analysis from a single dry seed. Plant Mol Biol Rep, 1998, 16: 1-9
[36]Huang Q-J(黄秦军), Ding M-M(丁明明), Zhang X-H(张香华), Su X-H(苏晓华). Association analysis between SSR molecular markers and wood properties of Populus nigra. Sci Silvae Sin (林业科学), 2007, 43 (2): 43-47 (in Chinese with English abstract)
[37]Hong Y-B(洪彦彬), Li S-X(李少雄), Liu H-Y(刘海燕), Zhou G-Y(周桂元), Chen X-P(陈小平), Wen S-J(温世杰), Liang X-Q(梁炫强). Correlation analysis of SSR markers and host resistance to Aspergillus flavus infection in peanut (Arachis hypogaea L.). Mol Plant Breed (分子植物育种), 2009, 7(2): 360-364 (in Chinese with English abstract)
[38]Elhan S E, Yu J M, Buckler E S. Applications of linkage disequilibrium and association mapping in maize. In: Kriz A L, Larkins B A, eds. Molecular Genetic Approaches to Maize Improvement. Berlin Heidelberg: Springer-Verlag, Biotechnology in Agriculture and Forestry, 2009. Vol. 63. pp 173-195
[39]Abecasis G R, Cookson W O C, Cardon L R. The power to detect linkage disequilibrium with quantitative traits in selected samples. Am J Hum Genet, 2001, 68: 1463-1474
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!