欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1657-1665.doi: 10.3724/SP.J.1006.2010.01657

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花种间BC1群体偏分离的遗传剖析

余渝1,2,张艳欣1,林忠旭1,*,张献龙1   

  1. 1华中农业大学/作物遗传改良国家重点实验室及国家植物基因研究中心,湖北武汉430070;2新疆农垦科学院棉花所,新疆石河子832000
  • 收稿日期:2010-01-19 修回日期:2010-05-20 出版日期:2010-10-12 网络出版日期:2010-07-05
  • 通讯作者: Lin Zhong-Xu E-mail: linzhongxu@mail.hzau.edu.cn; Tel: +86-2787283955

Genetic Dissection of Segregation Distortion in Interspecific BC1 Populations of Cotton

YU Yu1,2,ZHANGYan-Xin1,LINZhong-Xu1*,ZHANG Xian-Long 1   

  1. 1National Key Laboratory of Crop Genetic Improvement & National Centre of Plant Gene Research,Huazhong Agricultural University,Wuhan 430070,China;2Cotton Institute,Xinjiang Academy of Agriculture and Reclamation Science,Shihezi 832000,China
  • Received:2010-01-19 Revised:2010-05-20 Published:2010-10-12 Published online:2010-07-05
  • Contact: Lin Zhong-Xu E-mail: linzhongxu@mail.hzau.edu.cn; Tel: +86-2787283955
  • Supported by:
    This study wassupported bythe National Basic Research Program (973 Program) (2010CB126001).

摘要: 偏分离是指观察到的基因型频率偏离预期的孟德尔频率的遗传分离方式,在大多数的遗传定位研究中非常普遍。在之前我们发表的遗传连锁图中,107个SSR标记在BC1作图群体 [(Emian 22×3-79) × Emian 22]中表现偏分离。为阐明这些偏分离标记的遗传机制及其在其它群体中的偏分离情况,将其中97个共显性标记在另外两个回交群体中进行验证。结果表明,原图谱中的61个偏分离标记在另外两个回交群体中都表现正常分离,说明杂交方式是导致偏分离的一个重要因素。36个偏分离标记至少在两个群体中仍表现偏分离,偏分离应该是配子选择的结果。偏分离标记分布于14条染色体上,其中D亚基因组上的分布多于A亚基因组。偏分离标记在在第2、第16和第18染色体上分布最多,暗示在这些染色体上存在偏分离位点,该结果有助于在棉花中鉴定偏分离位点。

关键词: 海岛棉, 微卫星标记, 偏分离, 回交群体

Abstract: Segregation distortion (SD) is the deviation of genetic segregation ratios from their expected Mendelian fashion and is a common phenomenon found in most genetic mapping studies. In our previously genetic map published, 107 SSR markers showed SDin the BC1 mapping population [(Emian 22×3-79) × Emian 22]. To verify their segregation in other populations and to clarify the possible mechanism of SD, 97 co-dominant markers of them were evaluated in another two backcross populations. The results showed that 61 distorted markers in the mapping population segregated normally in the other backcross populations, which implied that the cross way is a major factor affecting segregation distortion. Thirty-six markers showed segregation distortion in at least two populations, which is assumed to be caused by gametic selection. These distorted markers distributed on 14 Chromosomes with more markers in D sub-genome than in A sub-genome. Chr.2, Chr.16, and Chr.18 were the Chromosomes with more distorted markers than others, which implies that there must be segregation distortion loci on these Chromosomes, leading us to identify segregation distortion loci in cotton.

Key words: Cotton, Simple sequence repeats(SSR), Segregation distortion(SD), Backcross population

[1] Mangelsdorf P C, Jones D F. The expression of mendelian factors in the gametophyte of maize. Genetics, 1926, 11: 423-455
[2] Harushima Y, Kurata N, Yano M, Nagamura Y, Sasaki T, Minobe Y, Nakagahra M. Detection of segregation distortions in an indica-japonca rice cross using a high-resolution molecular map.Theor Appl Genet, 1996, 92: 145-150
[3] Xu Y, Zhu L, Xiao J, Huang N, McCouch S R. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, double haploid and recombinant inbred populations in rice Oryza sativa L. Mol Gen Genet, 1997, 253: 535-545
[4] Matsushita S, Iseki T, Fukuta Y, Araki E, Kobayashi S, Osaki M, Yamagishi M. Characterization of segregation distortion on Chromosome 3 induced in wide hybridization between indica and japonica type rice varieties. Euphytica, 2003, 134: 27-32
[5] Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet, 2002, 105: 622-628
[6] Sibov S T, de Souza Jr C L, Garcia A A F, Gareia A F, Silva A R, Mangolin C A, Benchimol L L, de Souza A P. Molecular mapping in tropical maize Zea mays L. using microsatellite markers. I. Map construction and localization of loci showing distorted segregation. Hereditas, 2003, 139: 96-106
[7] Messmer M M, Keller M, Zanetti S, Keller B. Genetic linkage map of a wheat × spelt cross. Theor Appl Genet, 1999, 98: 1163-1170
[8] Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr C. An integrative genetic linkage map of winter wheat Triticum aestivum L. Theor Appl Genet, 2003, 107: 1235-1242
[9] Liu G(刘刚), Xu S-B(许盛宝), Ni Z-F(倪中福), Li J(李晶), Qin D-D(秦丹丹), Dou B-D(窦秉德), Peng H-R(彭惠茹), Sun Q-X(孙其信). Genetic analysis of segregation distortion of molecular markers in wheat RIL population. J Agric Biotech (农业生物技术学报),2007, 15: 828-833 (in Chinese with English abstract)
[10] Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann R G. Construction of an RFLP map of barley. Theor Appl Genet, 1991, 83: 250-256
[11] Heun M, Kennedy A E, Anderson J A, Lapitan N L V, Sorrells S E, Tanksley S D. Construction of a restriction fragment length polymorphism map for barley Hordeum vulgare. Genome, 1991, 34: 437-447
[12] Devaux P, Kilian A, Kleinhofs A. Comparative mapping of the barley genome with male and female recombination-derived, doubled haploid populations. Mol Gen Genet, 1995, 249: 600-608
[13] Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: Comparative across species, generations and environments. Genetics, 1991, 127: 181-197
[14] Pillen K, Steinrü C G, Herrmann R G, Jung C. An extended linkage map of sugar beet Beta vulgans L. including nine putative lethal genes and the restorer gene X. Plant Breed, 1993, 111: 265-272
[15] Brummer E C, Bouton J H, Kochert G. Development of a RFLP map in diploid alfalfa. Theor Appl Genet, 1993, 86: 329-332
[16] Kaló P, Entire G, Zimá ayi, L, Csaná di G. Construction of an improved linkage map of diploid alfalfa Medicago sativa. Theor Appl Genet, 2000, 100: 641-657
[17] Ky C L, Barre P, Lorieux M, Thouslo P, Akaffou S, Louam J, Charrier A, Hamon S, Noirot M. Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee Coffea sp. Theor Appl Genet, 2000, 101: 669-676
[18] Busso C S, Liu C J, Hash C T, Witcombe J R, Devos K M, de Wet J M J, Gale M D. Analysis of recombination rate in female and male gametogenesis in pearl millet Pennisetum glaucum using RFLP markers. Theor Appl Genet, 1995, 90: 242-246
[19] Liu C J, Devos K M, Witcombe J R, Pittaway T S, Gale M D. The effect of genome and sex on recombination rates in Pennisetum species. Theor Appl Genet, 1996, 93: 902-908
[20] Rong J, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X, Garza J J, Marler B S, Park C, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, Wright R J, Zhao X, Zhu L, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission of cotton Gossypium. Genetics, 2004, 166: 389-417
[21] Lacape J M, Nguye T B, Thibivilliers S, Bojinov B, Courtois B, Cantrell R G, Burr B, Hau B. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome, 2003, 46: 612-626
[22] He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Zhang Y X, Li W. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica, 2007, 153: 181-197
[23] Yu J W, Yu S X, Lu C R, Wang W, Fan S L, Song M Z, Lin Z X, Zhang X L, Zhang J F. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integr Plant Biol, 2007, 49: 716-724
[24] Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics, 2007,176: 527-541
[25] Zhang Y X, Lin Z X, Xia Q Z, Zhang M J, Zhang X L. Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. Genome, 2008, 51: 534-546
[26] Shappley Z W, Jenkins J N, Meredith W R, McCarty J C. An RFLP linkage map of upland cotton Gossypium hirsutum L. Theor Appl Genet, 1998, 97: 756-761
[27] Ulloa M, Meredith W R Jr, Shappley Z W, Kahler A L. RFLP genetic linkage maps from F2.3 populations and a joinmap of Gossypium hirsutum L. Theor Appl Genet, 2002, 104: 200-208
[28] Zhang Z S, Xiao Y H, Luo M, Li X B, Luo X Y, Hou L, Li D M, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton Gossypium hirsutum L. Euphytica, 2005, 144: 91-99
[29] Lin Z X, Zhang Y X, Zhang Y X, Guo X P. A high-density integrative linkage map for Gossypium hirsutum. Euphytica, 2009, 166: 35-45
[30] Jiang C X, Wright R J, El-Zik K, Paterson A H. Polyploid formation created unique avenues for response to selection in Gossypium cotton. Proc Natl Acad Sci USA, 1998, 95: 1419-1424
[31] Mei M, Syed N H, Gao W, Thaxton P M, Smith C W, Stelly D M, Chen Z J. Genetic mapping and QTL analysis of fiber-related traits in cotton Gossypium. Theor Appl Genet, 2003,108: 280-291
[32] Lin Z X, He D H, Zhang X L, Nie Y C, Guo X P, Feng C D, Stewart J M. Linkage map construction and mapping QTLs for cotton fiber quality using SRAP, SSR and RAPD. Plant Breed, 2005, 124: 180-187
[33] Paterson A H, Brubaker C, Wende J F. A rapid method for extraction of cotton Gossypium spp. genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122-127
[34] Stephens S G. The genetics of ‘‘Corky’’. The New World alleles and their possible role as an interspecific isolating mechanism. J Genetics, 1946, 47: 150-161
[35] Song X-L(宋宪亮), Sun X-Z(孙学振), Zhang T-Z(张天真). Segregation distortion and its effect on genetic mapping in plants. J Agric Biotech (农业生物技术学报), 2006, 14: 286-292 (in Chinese with English abstract)
[36] Schwemmle J. Selective fertilization in Oenothera. Adv Genet, 1968, 14: 225-324
[37] Gadish I and Zamir D. Differential zygotic abortion in an interspecific Lycopersicon cross. Genome, 1986, 29: 156-159
[38] Lyttle T W. Segregation distorters. Annu Rev Genet, 1991, 25: 511-557
[39] Faris J D, Laddomada B, Gill B S. Molecular mapping segregation distortion loci in Aegilops tauschii. Genetics, 1998, 149:319-327
[40] Kumar S, Gill B S, Faris J D. Identification and characterization of segregation distortion loci along Chromosome 5B in tetraploid wheat. Mol Genet Genomics, 2007,278: 187-196
[1] 曹新川,胡守林,韩秀锋,何良荣,郭伟锋. 海岛棉棉铃阶段性发育与产量品质的关系[J]. 作物学报, 2020, 46(02): 300-306.
[2] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[3] 李乐晨,朱国忠,苏秀娟,郭旺珍. 适于海岛棉指纹图谱构建的SNP核心位点筛选与评价[J]. 作物学报, 2019, 45(5): 647-655.
[4] 严青青,张巨松,李星星,王燕提. 盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响[J]. 作物学报, 2019, 45(1): 100-110.
[5] 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126.
[6] 黄启秀,曲延英,姚正培,李梦雨,陈全家*. 海岛棉枯萎病抗性与类黄酮代谢相关基因表达量的相关[J]. 作物学报, 2017, 43(12): 1791-1801.
[7] 张力佳,张艳,荣伟,杨君,张桂寅,吴立强,李志坤,吴金华,马峙英,王省芬. 一个受黄萎病菌诱导的海岛棉功能基因GbVWR的克隆与表达[J]. 作物学报, 2016, 42(12): 1779-1786.
[8] 王鹏,张天真. 利用棉花海陆种间染色体片段导入系剖析光合色素含量的遗传基础[J]. 作物学报, 2012, 38(06): 947-953.
[9] 韩建东,李伟华,曹远银,宫志远,姚强. 小麦抗秆锈病基因Sr33的微卫星标记[J]. 作物学报, 2012, 38(06): 1003-1008.
[10] 张媛媛, 束爱萍, 张立娜, 曹桂兰, 韩龙植. 中国不同省份籼稻地方品种的遗传结构分析[J]. 作物学报, 2011, 37(12): 2173-2178.
[11] 邵菁, 戴伟民, 张连举, 宋小玲, 强胜. 江苏省杂草稻遗传多样性及其起源分析[J]. 作物学报, 2011, 37(08): 1324-1332.
[12] 王变银, 翟军, 郝元峰, 李安飞, 孔令让. 对人工合成小麦的微卫星变异分析[J]. 作物学报, 2011, 37(08): 1491-1496.
[13] 张强, 姚国新, 胡广隆, 汤波, 陈超, 李自超. 利用极端材料定位水稻粒形性状数量基因位点[J]. 作物学报, 2011, 37(05): 784-792.
[14] 吴承来, 张倩倩, 董炳雪, 张春庆. 我国部分玉米自交系遗传关系和遗传结构解析[J]. 作物学报, 2010, 36(11): 1820-1831.
[15] 张培培,王夏青,余杨,余渝,林忠旭,张献龙. 首批海岛棉基因组来源的微卫星标记的分离、评价和定位[J]. 作物学报, 2009, 35(6): 1013-1020.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!