欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1666-1673.doi: 10.3724/SP.J.1006.2010.01666

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

野生大豆胁迫应答膜联蛋白基因的克隆及胁迫耐性分析

王希,李勇,朱延明*,柏锡,才华,纪巍   

  1. 东北农业大学生命科学学院,黑龙江哈尔滨 150030
  • 收稿日期:2010-02-10 修回日期:2010-05-24 出版日期:2010-10-12 网络出版日期:2010-07-05
  • 通讯作者: 朱延明, E-mail: ymzhu2001@neau.edu.cn
  • 基金资助:

     本研究由国家科技部重大基础研究前期研究专项(2003CCA03500),国家自然科学基金项目(30570990)和国家高技术研究发展计划(2007AA10Z193)资助。

Cloning and Tolerance Analysis of GsANN Gene Related to Response on Stress in Glycine soja

WANG Xi,LI Yong,ZHU Yan-Ming*,BAI Xi,CAI Hua,JI Wei   

  1. College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
  • Received:2010-02-10 Revised:2010-05-24 Published:2010-10-12 Published online:2010-07-05
  • Contact: ZHU Yan-Ming,E-mail:ymzhu2001@neau.edu.cn

摘要: 野生大豆对非生物胁迫具有优良的抗性,是研究胁迫机制、挖掘抗性基因的理想材料。以耐盐野生大豆为试材,利用前期获得的盐胁迫基因芯片杂交结果和EST数据库,筛选出1个响应胁迫的3¢-EST,序列分析表明, 该EST编码膜联蛋白(annexin, ANN)。通过改进的5¢-RACE获得了该基因的完整编码区,翻译产物与拟南芥膜联蛋白的相似性为57%,将该基因命名为GsANNGsANN基因的翻译产物具有膜联蛋白家族特征性的结构域,无强烈的亲水/疏水性,无信号肽,无跨膜结构域,与已报道的植物ANN蛋白一致。亚细胞定位结果表明GsANN蛋白在细胞内聚集于质膜附近。GsANN基因在野生大豆叶中受盐及干旱胁迫的诱导,超量表达GsANN基因的拟南芥对盐胁迫和干旱胁迫的敏感性提高,揭示了该基因与植物抗性间的关系。

关键词: 野生大豆, 干旱胁迫, 盐肋迫, 膜联蛋白, GsANN

Abstract: Abiotic stresses, such as salt and drought, affect plant growth, development and reduce crop yield. Glycine soja is an excellent material to clone abiotic stresses related genes because of its high stress tolerance. In previous work, an EST database was constructed using a salt-tolerant variety of G. soja, and a gene expression profile was also obtained by microarray hybridization. Expression of all G. soja ESTs was analyzed, and one 3¢-EST was found to be induced by stress, representing an annexin (ANN) gene, a widely-existing super family which has been found to respond to some kinds of abiotic stresses and plays roles in many important cellular processes including membrane formation, regulation of ion channels, signal transduction and so on. Complete coding sequence of this annexin gene was obtaind with developed 5¢-RACE and named as GsANN. Translation product of GsANN had 57% similarity with ANN4 of Arabidopsis thaliana. GsANN had three ANN domains, with moderate hydrophobicity/hydrophilicity, and no signal peptide or transmembrane segment, which was consistent with other ANNs of other plants. Localization of GsANN protein was analyzed by transient expression in tobacco epidermis cells and the result showed that GsANN localized around plasma membrane unevenly and might form oligomers. Semi-quantitative RT-PCR showed the expression level of GsANN was induced by drought and salt stresses in G. soja leaf. Arabidopsis thaliana plants overexpressing GsANN showed lower survival rate and higher sensitivity under both salt and drought stresses. GsANN is a novel ANN gene and is closely related to salt and drought stresses, so it can either be used as a new resource in gene engineering on stress tolerance or be further studied to provide more information for the researches on the mechanism of stress tolerance of plant.

Key words: Glycine soja, Drought stress, Salt stress, Annexin, GsANN

[1] Kreps J A, Wu Y, Chang H S, Zhu T, Wang X, Harper J. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol, 2002, 130: 2129–2141
[2] Seki M, Narusaka M, Ishida J. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Plant J, 2002, 31: 279–292
[3] Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58: 221–227
[4] Wang Y-F(汪耀富), Yang T-X(杨天旭), Liu G-S(刘国顺), Zhao C-H(赵春华), Wang P(王佩), Chen X-J(陈新建). Differently expressed genes in tobacco leaves under osmotic stress. Acta Agron Sin (作物学报), 2007, 33: 914–920 (in Chinese with English abstract)
[5] Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol, 2009, 149: 88–95
[6] Ma T-C(马廷臣), Chen R-J(陈荣军), Yu R-R(余蓉蓉), Zeng H-L(曾汉来), Zhang D-P(张端品). Global genome expression analysis of transcription factors under PEG osmotic stress in rice root system. Acta Agron Sin (作物学报), 2009, 35: 1030–1037 (in Chinese with English abstract)
[7] Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress reponse. Plant Physiol, 1997, 115: 327–334
[8] Li J(李杰), Chen L-H(陈丽华), Zhu Y-M(朱延明). Study on transgenic plant of osmotic stress resistance. J Northeast Agric Univ (东北农业大学学报), 2005, 36: 241–248 (in Chinese with English abstract)
[9] Moss S E, Morgan R O. The annexins. Genome Biol, 2004, 5: 219
[10] Na J(那杰), Yang H-Y(杨怀义). Advances in the study of plant annexins. J Liaoning Norm Univ (Nat Sci Edn) (辽宁师范大学学报·自然科学版), 2004, 27: 464–467 (in Chinese with English abstract)
[11] Delmer D P, Potikha T S. Structures and functions of annexins in plants. Cell Mol Life Sci, 1997, 53: 546–553
[12] Clark G B, Sessions A, Eastburn D J, Roux S J. Differential expression of members of the annexin multigene family in Arabidopsis. Plant Physiol, 2001, 126: 1072–1084
[13] Gidrol X, Sabelli P A, Fern Y S, Kush A K. Annexin-like protein from Arabidopsis thaliana rescues delta oxyR mutant of Escherichia coli from H2O2 stress. Proc Natl Acad Sci USA, 1996, 93: 11268–11273
[14] Gorecka K M, Thouverey C, Buchet R, Pikula S. Potential role of annexin AnnAt1 from Arabidopsis thaliana in pH-mediated cellular response to environmental stimuli. Plant Cell Physiol, 2007, 48: 792–803
[15] Boustead C M, Smallwood M, Small H, Bowles D J, Walker J H. Identification of calcium-dependent phospholipid-binding proteins in higher plant cells. FEBS Lett, 1989, 244: 456–460
[16] Hofmann A, Proust J, Dorowski A, Schantz R, Huber R.Annexin 24 from Casicum annuum: X-ray structure and biochemical characterization. J Biol Chem, 2000, 275: 8072–8082
[17] Cantero A, Barthakur S, Bushart T J, Chou S, Morgan R O, Fernandez M P, Clark G B, Roux S J. Expression profiling of the Arabidopsis annexin gene family during germination, de-etiolation and abiotic stress. Plant Physiol Bioch, 2006, 44: 13–24
[18]Breton G, Vazquez-Tello A, Danyluk J, Sarhan F. Two novel intrinsic annexins accumulate in wheat membranes in response to low temperature. Plant Cell Physiol, 2000, 41: 177–184
[19] Chandran D, Sharopova N, Ivashuta S, Gantt J S, VandenBosch K A, Samac D A. Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta, 2008, 228: 151–166
[20] Ji W, Li Y, Li J, Dai C H, Wang X, Bai X, Cai H, Yang L, Zhu Y M. Generation and analysis of expressed sequence tags from NaCl-treated Glycine soja. BMC Plant Biol, 2006, 6: 4
[21] Sambrook J, Russell D W. Molecular Cloning: A Laboratory Manual, 3rd edn. New York: Cold Spring Harbor Laboratory Press, 2001. pp 1–709
[22] Brigneti G, Voinnet O, Li W X, Ji L H, Ding S W, Baulcombe D C. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J, 1998, 17: 6739–6746
[23] Yang L(杨靓), Ji W(纪巍), Dai C-H(代翠红), Zhu Y-M(朱延明). Construction of the high throughput technology for screening osmotic stress relevant genes. China Biotechnol (中国生物工程杂志), 2008, 28: 60–64 (in Chinese with English abstract)
[24] Clough S J, Bent A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743
[25] Monastyrskaya K, Babiychuk E B, Draeger A. The annexins: spatial and temporal coordination of signaling events during cellular stress. Cell Mol Life Sci, 2009, 66: 2623–2642
[1] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[2] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[3] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[4] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[5] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[6] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[7] 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480.
[8] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[9] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘[J]. 作物学报, 2020, 46(7): 1033-1051.
[10] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.
[11] 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364.
[12] 陈影,张晟瑞,王岚,王连铮,李斌,孙君明. 野生和栽培大豆种质油脂组成特点及其与演化的关系[J]. 作物学报, 2019, 45(7): 1038-1049.
[13] 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704.
[14] 王慧敏,李新国,万书波,张智猛,丁红,李国卫,高文伟,彭振英. 花生膜联蛋白基因家族成员的结构和表达分析[J]. 作物学报, 2019, 45(3): 390-400.
[15] 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!