欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1003-1008.doi: 10.3724/SP.J.1006.2012.01003

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦抗秆锈病基因Sr33的微卫星标记

韩建东1,2,**,李伟华2,**,曹远银2,*,宫志远1,姚强1   

  1. 1山东省农业科学院农业资源与环境研究所,山东济南 250100;2沈阳农业大学植物免疫研究所,辽宁沈阳 110866
  • 收稿日期:2011-09-04 修回日期:2012-02-22 出版日期:2012-06-12 网络出版日期:2012-03-29
  • 通讯作者: 曹远银, E-mail: caoyy66@yahoo.com.cn; Tel: 13604000358
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项(200903035)和国家自然科学基金项目(31171829)资助。

Microsatellite Markers Linked to Stem Rust Resistance Gene Sr33 in Wheat

HAN Jian-Dong1,2,**,LI Wei-Hua2,**,CAO Yuan-Yin2,*,GONG Zhi-Yuan1,YAO Qiang1   

  1. 1Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 2Institute of Plant Immunology, Shenyang Agricultural University, Shenyang 110866, China
  • Received:2011-09-04 Revised:2012-02-22 Published:2012-06-12 Published online:2012-03-29
  • Contact: 曹远银, E-mail: caoyy66@yahoo.com.cn; Tel: 13604000358

摘要: 小麦抗秆锈病基因Sr33对强毒力小种Ug99和我国多数小麦秆锈菌小种具有良好抗性。以感病品种McNair701和来源于Tetra Canthatch/Triticum tauschii的单基因系Sr33为亲本,选用我国流行的小种34MKG,对作图群体161个F2单株及其F2:3家系进行抗性鉴定分析,利用分离群体集群分析法对位于小麦1D染色体上的57对微卫星引物进行扩增多态性筛选。获得2对在亲本及F2抗、感群体间揭示多态性的共显性标记 Xbarc152和Xcfd15,位于Sr33两侧,与目标基因的遗传距离分别为2.4 cM和2.1 cM。

关键词: 微卫星标记, 小麦秆锈病, Sr33, 基因定位

Abstract: Gene Sr33 confers resistance not only toUg99, but also to most Puccinia graminis f.sp. tritici races in China. A mapping population, consisting of 161 F2 plants and F2:3 families derived from the crossbetween susceptible wheat cultivar “McNair701” and a Tetra Canthatch/Triticum tauschii line carrying single Sr geneSr33, were inoculated with chinese prevalent race 34MKG to locate this resistance gene using microsatellite markers. A total of 57 microsatellite markers covering chromosome 1D were used in bulked segregation analysis (BSA) based on resistance identification at seedlings stage. Two codominant markers, Xbarc152 and Xcfd15, were obtained, which were located at both sides of Sr33. The genetic distances of Xbarc152 and Xcfd15 to the target gene were 2.4 cM and 2.1 cM respectively. These closely linked markers can be used in marker-assisted selection of wheat breeding against stem rust disease.

Key words: Microsatellite marker, Wheat stem rust, Sr33, Gene location

[1] Knott D R. The Wheat Rusts: Breeding for Resistance. New York & Berlin Heidelberg: Springer-Verlag, 1989. p 201

[2] Pretorius Z A, Singh R P, Wagoire W W, Payne T S. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis, 2000, 84: 203

[3] Nazari K, Mafi M, Yahyaoui A, Singh R P, Park R F. Detection of wheat stem rust (Puccina graminis f. sp. tritici) race TTKSK (Ug99) in Iran. Plant Dis, 2009, 93: 317

[4] Tsilo T, Jin Y, Anderson J. Diagnostic microsatellite markers for detection of stem rust resistance gene Sr36 in diverse genetic backgrounds of wheat. Crop Sci, 2008, 48: 253–261

[5] McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers D J, Appels R, Devos K M. Catalogue of gene symbols for wheat: MacGene 2008. Committee for the National BioResource Project (NBRP)/KOMUGI, Japan. (2009-08-27) [2011-08-29]. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp.

[6] Jin Y, Singh R P, Ward R W, Wanyera R, Kinyua M. Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis, 2007, 91: 1096–1099

[7] Han J-D(韩建东), Cao Y-Y(曹远银), Sun Z-G(孙仲桂). Race dynamics of Puccinia graminis f. sp. tritici in China and the virulence on CIMMYT wheat germplasm resistant to Ug99. J Triticeae Crops (麦类作物学报), 2010, 30(1): 163–166 (in Chinesewith English abstract)

[8] Zhang S-S(张书绅), Qiu Y-C(邱永春), Yao P(姚平). Postulation of resistant gene to stem rust in 94 cultivars of wheat important resistant resources. J Shenyang Agric Univ (沈阳农业大学学报),1998, 29(2): 117–122 (in Chinese with English abstract)1008 作 物 学 报 第 38 卷

[9] Tsilo T J, Jin Y, Anderson J A. Microsatellite markers linked to stem rust resistance allele Sr9a in wheat. Crop Sci, 2007, 47:2013–2020

[10] Spielmeyer W, Sharp P J, Lagudah E S. Identification and validation of markers linked to broad spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Sci, 2003, 43:333–337

[11] Parker G D, Chalmers K J, Rathjen A J, Landgridge P. Mapping loci associated with flour colour in wheat (Triticum aestivum L).Theor Appl Genet, 1998, 96: 1021–1032

[12] Tsilo T J, Chao S, Jin Y, Anderson J A. Identification and validation of SSR markers linked to the stem rust resistance gene Sr6 on the short arm of chromosome 2D in wheat. Theor Appl Genet,2009, 118: 515–524

[13] Paull J G, Pallotta M A, Landgridge P, The T T. RFLP markers associated with Sr22 and recombination between chromosome 7A of bread wheat and the diploid species Triticum boeoticum. TheorAppl Genet, 1994, 89: 1039–1045

[14] Khan R R, Bariana H S, Dholakia B B, Naik S V, Lagu M D,Rathjen A J, Bhavani S, Gupta V S. Molecular mapping of stem and leaf rust resistance in wheat. Theor Appl Genet, 2005, 111: 846–850

[15] Han J-D(韩建东), Zhu G-Q(朱桂清), Li W-H(李伟华), Cao Y-Y(曹远银). New SSR markers for stem rust resistance gene Sr22 in wheat. Sci Agric Sin (中国农业科学), 2010, 43(15):3244–3250 (in Chinese with English abstract)

[16] Mago R, Bariana H S, Dundas I A, Spielmeyer W, Lawrence G J, Pryor A J, Elli J G. Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet, 2005, 111: 496–504

[17] Prins R, Groenewald J Z, Marias G F, Snape J W, Koebner R M D. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl Genet, 2001, 103: 618–624

[18] Das B K, Saini A, Bhagwa S G, Jawali N. Development of SCAR markers for identification of stem rust resistance gene Sr31 in the homozygous or heterozygous condition in bread wheat. Plant Breed, 2006, 125: 544–549

[19] Helguera M, Khan I A, Kolmer J, Lijavetzky D, Zhong-qi L, Dubcovsky J. PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci, 2003, 43: 1839–1847

[20] Gold J, Harder D, Townley-Smith F, Aung T, Procunier J. Development of a molecular marker for rust resistance gene Sr39 and Lr35 in wheat breeding lines. Electronic J Biotechnol, 1999,2: 35–40

[21] Mater Y, Baenzinger S, Gill K, Graybosch R, Whitcher L, Baker C, Specht J, Dweikat I. Linkage mapping of powdery mildew and greenbug resistance genes on recombinant 1RS from ‘Amigo’ and ‘Kaukaz’ wheat-rye translocations of chromosome 1RS·1AL.Genome, 2004, 47: 292–298

[22] Mago R, Spielmeyer W, Lawrence G, Lagudah E, Ellis J, Pryor A. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet, 2002, 104:1317–1324

[23] Mago R, Spielmeyer W, Lawrence G J, Ellis J G, Prior A J. Resistance genes for rye stem rust (SrR) and barley powdery mildew (Mla) are located in syntenic regions on short arm of chromosome.Genome, 2004, 47: 112–121

[24] Roelfs A P. Race specificity and methods of study. Cereal Rust,1985, (1): 131–164

[25] Aldrich J, Cullis C A. RAPD analysis in flax: optimization of yield and reproducibility using Klen Taq l DNA polymerase, Chelex 100, and gel purification of genomic DNA. Plant Mol Biol Rep, 1993, 11: 128–141

[26] Michelmore R W, Paran I. Identification of markers linked to disease-resistance genes by bulked segregate analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Nat Acad Sci USA, 1991, 88:9828–9832

[27] Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics,1998, 149: 2007–2023

[28] Bassam B J, Caetano-Anollés G, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem,1991, 196: 80–83

[29] Lagudah E S, Halloran G M. Phylogenetic relationship of Triticum tauschii, the D genome donor to hexaploid wheat: I. Variation in HMW subunits of glutenin and gliadins. Theor Appl Genet,1988, 75: 592–598

[30] McIntosh R A. A catalogue of gene symbols for wheat. In: Miller T E, Koebner R M D, eds. Proc 7th Int Wheat Genet Symp IPSRCambridge, 1988. pp 1225–1324

[31] McIntosh R A, Hart G E, Devos K M, Gale M D, Rogers W J. Catalogue of gene symbols for wheat. In: Slinkard A E ed. Proc 9th Intl Wheat Genet Symp (Vol. 5). University of Saskatchewan, Saskatoon, Canada: University Extension Press, 1998. pp 1–235

[32] Kerber E R, Dyck P L. Resistance of stem and leaf rust of wheat in Aegilops squarrosa and transfer of a gene for stem rust resistance to hexaploid wheat. In: Proc 5th Int Wheat Genet Symp, New Delhi, India, 1979. pp 358–364

[33] Jones S S, Dvorak J, Knot D R, Qualset C O. Use of doubleditelosomic and normal chromosome 1D recombinant substitution lines to map Sr33 on chromosome arm 1DS in wheat. Genome,1991, 34: 505–508

[34] Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–111
[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[4] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[5] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[6] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[7] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[8] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[9] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[10] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[11] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[12] 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661.
[13] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[14] 张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠. 水稻短根白化突变体sra1生理生化分析及基因定位[J]. 作物学报, 2019, 45(4): 556-567.
[15] 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!