欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1009-1017.doi: 10.3724/SP.J.1006.2012.01009

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同抗性小麦根与菲利普孢囊线虫(Heterodera filipjevi)互作的表型特征

崔磊1,2,高秀2,4,王晓鸣2,简恒3,唐文华3,李洪连1,*,李洪杰2,*   

  1. 1 河南农业大学植物保护学院,河南郑州450002;2 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程,北京100081;3 中国农业大学植物病理系,北京100193;4 河北科技师范学院生命科学学院,河北秦皇岛066004
  • 收稿日期:2011-12-13 修回日期:2012-02-22 出版日期:2012-06-12 网络出版日期:2012-03-29
  • 通讯作者: 李洪杰, E-mail: hongjie@caas.net.cn; 李洪连, E-mail: honglianli@sina.com
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项(200903040), 国家自然科学基金项目(31171545和30971899), 国家重点基础研究发展计划(973计划)项目(2009CB118300)和科技部中澳特别基金项目(2010DFA31380)的资助。

Characterization of Interaction between Wheat Roots with Different Resistance and Heterodera filipjevi

CUI Lei1,2,GAO Xiu2,4,WANG Xiao-Ming2,JIAN Heng3,TANG Wen-Hua3,LI Hong-Lian1,*,LI Hong-Jie2,*   

  1. 1 College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; 3 Department of Plant Pathology, China Agricultural University, Beijing 100193, China; 4 College of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
  • Received:2011-12-13 Revised:2012-02-22 Published:2012-06-12 Published online:2012-03-29
  • Contact: 李洪杰, E-mail: hongjie@caas.net.cn; 李洪连, E-mail: honglianli@sina.com

摘要: 菲利普孢囊线虫(Heterodera filipjevi)是最近在我国新发现的小麦病原线虫,在黄淮冬麦区对小麦生产构成威胁。2009—2011年2个生长季在河南省许昌市进行的田间病圃抗性鉴定中,小麦-黑麦6R(6D)染色体代换系(带有抗病基因CreR)对H. filipjevi Hfc-1致病型表现高抗反应型(HR),小麦品种太空6号表现中抗反应型(MR),其亲本品种豫麦49表现高感反应型(HS)。利用Pluronic F-127胶体为介质,研究了不同抗性小麦品种根尖对线虫的吸引性。结果显示,无论品种的抗性水平如何,其根尖单独存在时均能够吸引线虫的二龄幼虫;当3个品种(系)的根尖同时存在时,6R(6D)根尖吸引的二龄幼虫数量显著少于太空6号和豫麦49。采用酸性品红-次氯酸钠染色法观察线虫对根系的侵染,发现不论抗性水平高低,二龄幼虫都能侵入寄主根的组织,但至侵染后期,6R(6D)和太空6号根中的线虫数量显著少于豫麦49。这些结果表明,虽然线虫能够侵入抗病品种的根组织,但是大部分二龄幼虫却不能继续发育而形成孢囊。这为了解小麦对H. filipjevi的抗性机制提供了实验证据。

关键词: 小麦, 菲利普孢囊线虫, 抗病性, 侵染, 吸引, 小麦-线虫互作

Abstract: Heterodera filipjevi is a newly identified pathogenic species of cereal cyst nematode that invades wheat (Triticum aestivum L.) in central China. A two-year field test (2009–2011) conducted in Xuchang County, Henan Province, China, where H. filipjevi has severely damaged wheat for several years, demonstrated that the wheat-rye (Secale cereale L.) chromosome substitution line 6R(6D) (carrying gene CreR for resistance to Heterodera spp.) was highly resistant (HR) to the nematode. The wheat cultivar Taikong 6 was moderately resistant (MR) and its parental cultivar Yumai 49 was highly susceptible (HS). Attraction of H. filipjevi juveniles to root tips of wheats differed in resistance to H. filipjevi was studied using Pluronic F-127 gel as a medium. Although root tips from wheat cultivars with different resistance were able to attract juveniles of nematode alone, the number of juveniles around the root tip from line 6R(6D) was obviously less than that from Taikong 6 (MR) and Yumai 49 (HS) when they were challenged together concurrently by H. filipjevi. The juveniles were capable to penetrate into wheat roots regardless of their resistance as revealed by acid fuschin-sodium hypochlorite staining of infected roots. However, significantly smaller number of nematodes in the roots of 6R(6D) and Taikong 6 were observed compared to those of Yumai 49 at later stage of wheat-H. filipjevi interaction. These findings demonstrate that some of the H. filipjevi juveniles are not able to continue to reproduce themselves although they can penetrate the roots of resistant wheat cultivars 6R(6D) and Taikong 6. The results from this study provide experimental evidence on mechanism of host resistance to H. filipjevi.

Key words: wheat, Heterodera filipjevi, resistance, infestation, attraction, wheat-nematode interaction

[1]Rivoal R, Nicol J M. Past research on the cereal cyst nematode complex and future needs. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 3–10

[2]Ogbonnaya F C, Eastwood R F, Lagudah E. Identification and utilization of genes for cereal cyst nematode resistance (Heterodera avenae) resistance in wheat: the Australian experience. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 166–171

[3]Andres M F, Melillo M T, Delibes A, Romero M D, Bleve-Zacheo T. Changes in wheat root enzymes correlated with resistance to cereal cyst nematodes. New Phytol, 2001, 152: 343–354

[4]Seah S, Miller C, Sivasithamparam K, Lagudah E S. Root responses to cereal cyst nematode (Heterodera avenae) in hosts with different resistance genes. New Phytol, 2000, 146: 527–533

[5]Chen P-S(陈品三), Wang M-Z(王明祖), Peng D-L(彭德良). Preliminary report of identification on cereal cyst nematode of wheat in China. Sci Agric Sin (中国农业科学), 1991, 24(5): 89–91 (in Chinese with English abstract)

[6]Hajihasani A, Tanha Maafi Z, Nicol J M, Rezaee S. Effect of the cereal cyst nematode, Heterodera filipjevi, on wheat in microplot trials. Nematology, 2010, 12: 357–363

[7]Smiley R W. Occurrence, distribution and control of Heterodera avenae and H. filipjevi in western USA. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 35–40

[8]Peng D L, Ye W X, Peng H, Gu X C. First report of the cyst nematode (Heterodera filipjevi) on wheat in Henan province, China. Plant Dis, 2010, 94: 1262

[9]Li H L, Yuan H X, Sun J W, Fu B, Nian G L, Hou X S, Xing X P, Sun B J. First record of the cereal cyst nematode Heterodera filipjevi in China. Plant Dis, 2010, 94: 1505

[10]Yuan H-X(袁虹霞), Zhang F-X(张福霞), Zhang J-J(张佳佳), Hou X-S(侯兴松), Li H-J(李洪杰), Li H-L(李洪连). Resistance of CIMMYT wheat germplasm to Heterodera filipjevi Xuchang population from Henan province, China. Acta Agron Sin (作物学报), 2011, 37(11): 1956–1966 (in Chinese with English abstract)

[11]Li H J, Cui L, Li H L, Wang X M, Murray T D, Conner R L, Wang L J, Gao X, Sun Y, Sun S C, Tang W H. Effective resources in wheat and wheat-Thinopyrum derivatives for resistance to Heterodera filipjevi in China. Crop Sci, 2012, doi: 10.2135/cropsci2011.11.0591

[12]Taylor C, Shepherd K W, Langridge P. A molecular genetic map of the long arm of chromosome 6R of ray incorporating the cereal cyst nematode resistance gene, CreR. Theor Appl Genet, 1998, 97: 1000–1012

[13]Nian G-L(年高磊), Sun J-W(孙君伟), Hou X-S(侯兴松), Fu B(付博), Yuan H-X(袁虹霞), Xing X-P(邢小萍), Li H-L(李洪连). Identification of pathotypes of three populations of Heterodera filipjevi in Henan province. In: Liao J-L(廖金铃), Peng D-L(彭德良), Duan Y-X(段玉玺), eds. Nematology Research in China (中国线虫学研究). Beijing: China Agricultural Science and Technology Press, 2010. Vol. 3. pp 120–133 (in Chinese)

[14]Wang C, Lower S, Williamson V M. Application of Pluronic gel to the study of root-knot nematode behaviour. Nematology, 2009, 11: 453–464

[15]Byrd D W, Kirkpatrick T, Barker K R. An improved technique for clearing and staining plant tissues for the detection for clearing and staining plant tissues for the detection of nematode. J Nematol, 1983, 15: 142–143

[16]Heun M, Friebe B. Introgression of powdery mildew resistance from rye into wheat. Phytopathology, 1989, 80: 242–245

[17]Li H-J(李洪杰), Wang X-M(王晓鸣), Song F-J(宋凤景), Wu C-P(伍翠平), Wu X-F(武小菲), Zhang N(张宁), Zhou Y(周阳), Zhang X-Y(张学勇). Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agron Sin (作物学报), 2011, 37(39): 943–954 (in Chinese with English abstract)

[18]Friebe B, Jiang J, Raupp W J, McIntosh R A, Gill B S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 1996, 91: 59–87

[19]Ho J Y, Weide R, Ma H M, van Wordrangen M F, Lambert K N, Kooenneef M, Zabel P, Williamson V M. The root-knot nematode resistance gene (Mi) in tomato: construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes. Plant J, 1992, 2: 971–982

[20]Prot J C. Migration of plant parasitic nematodes towards plant roots. Rev Nématol, 1980, 3: 305–318

[21]Pline M, Dusenbery D B. Responses of plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera-computer tracking. J Chem Ecol, 1987, 13: 873–888

[22]Robinson A F. Optimal release rates for attracting Meloidogyne incognita, Rotylenchulus reniformis, and other nematodes to carbon dioxide in sand. J Nematol, 1995, 27: 42–50

[23]Wang C, Bruening G, Williamson V M. Determination of preferred pH for root-knot nematode aggregation using Pluronic F-127 gel. J Chem Ecol, 2009, 35: 1242–1251

[24]Grymaszewska G, Golinowski W. Structure of syncytia induced by Heterodera avenae Woll. in roots of susceptible and resistant wheat (Triticum aestivum L.). J Phytopathol, 1991, 133: 307–319

[25]Wu X-J(吴绪金), Yuan H-X(袁虹霞), Zhang J-F(张军锋), Xing X-P(邢小萍), Sun B-J(孙炳剑), Li H-L(李洪连). A preliminary study on the resistance mechanism of wheat cultivars to cereal cyst nematode. Henan Agric Sci (河南农业科学), 2009, (1): 73–77 (in Chinese with English abstract)

[26]Spiegel Y, Burrows P M, Bar-Eyal M. A chemo attractant in onion root exudates recognized by Ditylenchus dipsact in laboratory bioassay. Phytopathology, 2003, 93: 127–132

[27]Wuyts N, Maung Z T Z, Swennen R, De Waele D. Banana rhizodeposition: Characterization of root border cell production and effects on chemotaxis and motility of the parasitic nematode Radopholus similis. Plant Soil, 2006, 28: 217–228

[28]Barichello J M, Morishita M, Kozo T, Nangai T. Absorption of insulin from Pluronic F-127 gels following subcutaneous administration in rats. Int J Pharmaceutics, 1999, 184: 189–198

[29]Morishita M, Barichello J M, Takayama K, Chiba Y, Tokiwa S, Nagai T. Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin. Int J Pharmaceutics, 2001, 212: 289–293

[30]Kabanov A V, Batrakova E V, Alakhov V Y. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Delivery Rev, 2002, 54: 759–779

[31]Robinson A F. Movement of five nematode species through sand subjected to natural temperature gradient fluctuations. J Nematol, 1995, 26: 46–58

[32]Ko M P, van Gundy S D. An alternative gelling agent for culture and studies of nematodes, bacteria, fungi and plant tissues. J Nematol, 1988, 20: 478–485
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!