作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1009-1017.doi: 10.3724/SP.J.1006.2012.01009
崔磊1,2,高秀2,4,王晓鸣2,简恒3,唐文华3,李洪连1,*,李洪杰2,*
CUI Lei1,2,GAO Xiu2,4,WANG Xiao-Ming2,JIAN Heng3,TANG Wen-Hua3,LI Hong-Lian1,*,LI Hong-Jie2,*
摘要: 菲利普孢囊线虫(Heterodera filipjevi)是最近在我国新发现的小麦病原线虫,在黄淮冬麦区对小麦生产构成威胁。2009—2011年2个生长季在河南省许昌市进行的田间病圃抗性鉴定中,小麦-黑麦6R(6D)染色体代换系(带有抗病基因CreR)对H. filipjevi Hfc-1致病型表现高抗反应型(HR),小麦品种太空6号表现中抗反应型(MR),其亲本品种豫麦49表现高感反应型(HS)。利用Pluronic F-127胶体为介质,研究了不同抗性小麦品种根尖对线虫的吸引性。结果显示,无论品种的抗性水平如何,其根尖单独存在时均能够吸引线虫的二龄幼虫;当3个品种(系)的根尖同时存在时,6R(6D)根尖吸引的二龄幼虫数量显著少于太空6号和豫麦49。采用酸性品红-次氯酸钠染色法观察线虫对根系的侵染,发现不论抗性水平高低,二龄幼虫都能侵入寄主根的组织,但至侵染后期,6R(6D)和太空6号根中的线虫数量显著少于豫麦49。这些结果表明,虽然线虫能够侵入抗病品种的根组织,但是大部分二龄幼虫却不能继续发育而形成孢囊。这为了解小麦对H. filipjevi的抗性机制提供了实验证据。
[1]Rivoal R, Nicol J M. Past research on the cereal cyst nematode complex and future needs. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 3–10[2]Ogbonnaya F C, Eastwood R F, Lagudah E. Identification and utilization of genes for cereal cyst nematode resistance (Heterodera avenae) resistance in wheat: the Australian experience. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 166–171[3]Andres M F, Melillo M T, Delibes A, Romero M D, Bleve-Zacheo T. Changes in wheat root enzymes correlated with resistance to cereal cyst nematodes. New Phytol, 2001, 152: 343–354[4]Seah S, Miller C, Sivasithamparam K, Lagudah E S. Root responses to cereal cyst nematode (Heterodera avenae) in hosts with different resistance genes. New Phytol, 2000, 146: 527–533[5]Chen P-S(陈品三), Wang M-Z(王明祖), Peng D-L(彭德良). Preliminary report of identification on cereal cyst nematode of wheat in China. Sci Agric Sin (中国农业科学), 1991, 24(5): 89–91 (in Chinese with English abstract)[6]Hajihasani A, Tanha Maafi Z, Nicol J M, Rezaee S. Effect of the cereal cyst nematode, Heterodera filipjevi, on wheat in microplot trials. Nematology, 2010, 12: 357–363[7]Smiley R W. Occurrence, distribution and control of Heterodera avenae and H. filipjevi in western USA. In: Riley I T, Nicol J M, Dababat A A, eds. Cereal Cyst Nematodes: Status, Research and Outlook. Ankara, Turkey: CIMMYT Press, 2009. pp 35–40[8]Peng D L, Ye W X, Peng H, Gu X C. First report of the cyst nematode (Heterodera filipjevi) on wheat in Henan province, China. Plant Dis, 2010, 94: 1262[9]Li H L, Yuan H X, Sun J W, Fu B, Nian G L, Hou X S, Xing X P, Sun B J. First record of the cereal cyst nematode Heterodera filipjevi in China. Plant Dis, 2010, 94: 1505[10]Yuan H-X(袁虹霞), Zhang F-X(张福霞), Zhang J-J(张佳佳), Hou X-S(侯兴松), Li H-J(李洪杰), Li H-L(李洪连). Resistance of CIMMYT wheat germplasm to Heterodera filipjevi Xuchang population from Henan province, China. Acta Agron Sin (作物学报), 2011, 37(11): 1956–1966 (in Chinese with English abstract)[11]Li H J, Cui L, Li H L, Wang X M, Murray T D, Conner R L, Wang L J, Gao X, Sun Y, Sun S C, Tang W H. Effective resources in wheat and wheat-Thinopyrum derivatives for resistance to Heterodera filipjevi in China. Crop Sci, 2012, doi: 10.2135/cropsci2011.11.0591[12]Taylor C, Shepherd K W, Langridge P. A molecular genetic map of the long arm of chromosome 6R of ray incorporating the cereal cyst nematode resistance gene, CreR. Theor Appl Genet, 1998, 97: 1000–1012[13]Nian G-L(年高磊), Sun J-W(孙君伟), Hou X-S(侯兴松), Fu B(付博), Yuan H-X(袁虹霞), Xing X-P(邢小萍), Li H-L(李洪连). Identification of pathotypes of three populations of Heterodera filipjevi in Henan province. In: Liao J-L(廖金铃), Peng D-L(彭德良), Duan Y-X(段玉玺), eds. Nematology Research in China (中国线虫学研究). Beijing: China Agricultural Science and Technology Press, 2010. Vol. 3. pp 120–133 (in Chinese)[14]Wang C, Lower S, Williamson V M. Application of Pluronic gel to the study of root-knot nematode behaviour. Nematology, 2009, 11: 453–464[15]Byrd D W, Kirkpatrick T, Barker K R. An improved technique for clearing and staining plant tissues for the detection for clearing and staining plant tissues for the detection of nematode. J Nematol, 1983, 15: 142–143[16]Heun M, Friebe B. Introgression of powdery mildew resistance from rye into wheat. Phytopathology, 1989, 80: 242–245[17]Li H-J(李洪杰), Wang X-M(王晓鸣), Song F-J(宋凤景), Wu C-P(伍翠平), Wu X-F(武小菲), Zhang N(张宁), Zhou Y(周阳), Zhang X-Y(张学勇). Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agron Sin (作物学报), 2011, 37(39): 943–954 (in Chinese with English abstract)[18]Friebe B, Jiang J, Raupp W J, McIntosh R A, Gill B S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 1996, 91: 59–87[19]Ho J Y, Weide R, Ma H M, van Wordrangen M F, Lambert K N, Kooenneef M, Zabel P, Williamson V M. The root-knot nematode resistance gene (Mi) in tomato: construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes. Plant J, 1992, 2: 971–982[20]Prot J C. Migration of plant parasitic nematodes towards plant roots. Rev Nématol, 1980, 3: 305–318[21]Pline M, Dusenbery D B. Responses of plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera-computer tracking. J Chem Ecol, 1987, 13: 873–888[22]Robinson A F. Optimal release rates for attracting Meloidogyne incognita, Rotylenchulus reniformis, and other nematodes to carbon dioxide in sand. J Nematol, 1995, 27: 42–50[23]Wang C, Bruening G, Williamson V M. Determination of preferred pH for root-knot nematode aggregation using Pluronic F-127 gel. J Chem Ecol, 2009, 35: 1242–1251[24]Grymaszewska G, Golinowski W. Structure of syncytia induced by Heterodera avenae Woll. in roots of susceptible and resistant wheat (Triticum aestivum L.). J Phytopathol, 1991, 133: 307–319[25]Wu X-J(吴绪金), Yuan H-X(袁虹霞), Zhang J-F(张军锋), Xing X-P(邢小萍), Sun B-J(孙炳剑), Li H-L(李洪连). A preliminary study on the resistance mechanism of wheat cultivars to cereal cyst nematode. Henan Agric Sci (河南农业科学), 2009, (1): 73–77 (in Chinese with English abstract)[26]Spiegel Y, Burrows P M, Bar-Eyal M. A chemo attractant in onion root exudates recognized by Ditylenchus dipsact in laboratory bioassay. Phytopathology, 2003, 93: 127–132[27]Wuyts N, Maung Z T Z, Swennen R, De Waele D. Banana rhizodeposition: Characterization of root border cell production and effects on chemotaxis and motility of the parasitic nematode Radopholus similis. Plant Soil, 2006, 28: 217–228[28]Barichello J M, Morishita M, Kozo T, Nangai T. Absorption of insulin from Pluronic F-127 gels following subcutaneous administration in rats. Int J Pharmaceutics, 1999, 184: 189–198[29]Morishita M, Barichello J M, Takayama K, Chiba Y, Tokiwa S, Nagai T. Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin. Int J Pharmaceutics, 2001, 212: 289–293[30]Kabanov A V, Batrakova E V, Alakhov V Y. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Delivery Rev, 2002, 54: 759–779[31]Robinson A F. Movement of five nematode species through sand subjected to natural temperature gradient fluctuations. J Nematol, 1995, 26: 46–58[32]Ko M P, van Gundy S D. An alternative gelling agent for culture and studies of nematodes, bacteria, fungi and plant tissues. J Nematol, 1988, 20: 478–485 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634. |
[5] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[6] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[7] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[8] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[9] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[10] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[11] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[12] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[13] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[14] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[15] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
|