作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1018-1028.doi: 10.3724/SP.J.1006.2012.01018
武玉国,吴承来,秦保平,王振林,黄玮,杨敏,尹燕枰
WU Yu-Guo,WU Cheng-Lai,QIN Bao-Ping,WANG Zhen-Lin,HUANG Wei,YANG Min,YIN Yan-Ping*
摘要: 为了解小麦品种资源的遗传多样性, 筛选株高、产量相关性状相关标记的等位变异, 选用108对覆盖小麦各同源染色体且多态性高的SSR引物, 对黄淮麦区175个小麦品种进行分析。共检测到448个等位变异, 平均每个标记4.15个等位变异, 变化范围为2~14个;全部SSR位点的多态性信息含量(PIC)变化范围为0.075~0.869, 平均为0.561。聚类分析显示同一地区或同一育种单位育成的、具有共同亲本的品种多数聚为一类。关联分析表明, 与株高、产量相关性状显著关联(P<0.01)的标记有23个, 其中3个标记达到极显著(P<0.001)水平。标记wmc128(1B)和wmc236(3B)与小穗数极显著相关, 分别解释小穗数变异的10.5%和8.0%;标记Xgwm129(2B)与千粒重达到极显著相关, 可以解释千粒重变异的19.3%。
[1]Zhang X-Y(张学勇), Tong Y-P(童依平), You G-X(游光霞), Hao C-Y(郝晨阳), Ge H-M(盖红梅), Wang L-F(王兰芬), Li B(李滨), Dong Y-C(董玉琛), Li Z-S(李振声). Hitchhiking effect mapping: a new approach for discovering agronomic important genes. Sci Agric Sin (中国农业科学), 2006, 39(8): 1526-1535 (in Chinese with English abstract)[2]Salvi S, Tuberosa R. To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci, 2005, 10: 297-304[3]Farnir F, Coppieters W, Arranz J J, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M. Extensive genome-wide linkage disequilibrium in cattle. Genome Res, 2000, 10: 220-227[4]Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet, 1999, 22: 139-144[5]Jorde L B. Linkage disequilibrium and the search for complex disease genes. Genome Res, 2000, 10: 1435-1444[6]Wei T-M(魏添梅), Chang X-P(昌小平), Min D-H(闵东红), Jing R-L(景蕊莲). Analysis of genetic diversity and tapping elite alleles for plant height in drought-tolerant wheat varieties. Acta Agron Sin (作物学报), 2010, 36(6): 895-904 (in Chinese with English abstract) [7]Maccaferri M, Sanguineti M C, Enrico N, Roberto T. Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed, 2005, 15: 271-289[8]Flint-Garcia S A, Thuillet A C, Yu J M, Pressoir G, Romero S M, Sharon E, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler IV E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054-1064[9]Beló A, Zheng P, Luck S, Shen B, Meyer D J, Li B, Tingey S, Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics, 2008, 279: 1-10[10]Andersen J R, Schrag T, Melchinger A E, Zein I, Lübberstedt T. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet, 2005, 111: 206-217[11]Ducrocq S, Madur D, Veyrieras J B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A. Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics, 2008, 178: 2433-2437[12]Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P, Schüler, K. Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed, 2004, 13: 93-102[13]Simko I, Costanzo S, Haynes K G, Christ B J, Jones R W. Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theor Appl Genet, 2004, 108: 217-224[14]Zhao B(赵波), Ye J(叶剑), Jin W-L(金文林), Zeng C-W(曾潮武), Wu B-M(吴宝美), Pu S-J(濮绍京), Pan J-B(潘金豹), Wan P(万平). Analysis on genetic diversity and trait association of different types of azuki bean (Vigna angularisi) by SSR markers. Sci Agric Sin (中国农业科学). 2011, 44(4): 673-682 (in Chinese with English abstract)[15]Skøt L, Humphreys M O, Armstead I, Heywood S, Skøt K P. An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.). Mol Breed, 2005, 15: 233-245[16]Eizonga G C, Agrama H A, Lee F N, Yan W, Jia Y. Identifying novel resistance genes in newly introduced blast resistant rice germplasm. Crop Sci, 2006, 46: 1870-1878[17]Sabharwal V, Negi M S, Banga S S, Lakshmikumaran M. Mapping of AFLP markers linked to seed coat colour loci in Brassica juncea (L.) Czern. Theor Appl Genet, 2004, 109: 160-166[18]Li X-J(李小军), Xu X(徐鑫), Liu W-H(刘伟华), Li X-Q(李秀全), Li L-H(李立会). Genetic diversity of the founder parent Orofen and its progenies revealed by SSR markers. Sci Agric Sin (中国农业科学), 2009, 42(10): 3397-3404 (in Chinese with English abstract)[19]Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acids Res, 1991, 19: 1349[20]Wang L-X(王立新), Zhao C-P(赵昌平), Qiu J(邱军), Li H-B(李宏博), Ge L-L(葛玲玲), Sun J(孙辉), Yao J(姚骥). A new scoring method of SSR patterns for wheat. J Triticeae Crops (麦类作物学报). 2006, 26(4): 164-168 (in Chinese with English abstract)[21]Liu K J, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129[22]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959[23]Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165-1177[24]Edward Buckler Laboratory. Maize Diversity Research. [2007-01-30] http://www.maize genetics. net/bioinformatics/tassel[25]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611-2620[26]Li Z-K(李卓坤), Xie Q-G(谢全刚), Zhu Z-L(朱占玲), Liu J-L(刘金良), Han S-X(韩淑晓), Tian B(田宾), Yuan Q-Q(袁倩倩), Tian J-C(田纪春). Analysis of plant height heterosis based on QTL mapping in wheat. Acta Agron Sin (作物学报), 2010, 36(5): 771-778 (in Chinese with English abstract)[27]Zhang K-P(张坤普), Xu X-B(徐献斌), Tian J-C(田纪春). QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin (作物学报), 2009, 35(2): 270-278 (in Chinese with English abstract)[28]Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol, 2005, 57: 461-485[29]Chen X-M(陈新民), He Z-H(何中虎), Shi J-R(史建荣), Xia L-Q(夏兰芹), Ward R, Zhou Y(周阳), Jiang G-L(蒋国梁). Genetic diversity of high quality winter wheat varieties (lines) based on SSR markers. Acta Agron Sin (作物学报), 2003, 29(1): 13-19 (in Chinese with English abstract)[30]Zwart R S, Muylle H, Van Boekstaele E V, Roldán-Ruiz I. Evaluation of genetic diversity of Fusarium head blight resistance in European winter wheat. Theor Appl Genet, 2008, 117: 813-828[31]Hao C-Y(郝晨阳), Dong Y-C(董玉深), Wang L-F(王兰芬), You G-X(游光霞), Zhang H-N(张洪娜), Ge H-M(盖红梅), Jia J-Z(贾继增), Zhang X-Y(张学勇). The construction of common wheat core germplasm and analysis of genetic diversity in our country. Sci Bull (科学通报), 2008, 53(8): 908-915 (in Chinese)[32]Harris B P, Stokesbury K D E. The spatial structure of local surficial sediment characteristics on Georges Bank, USA. Continental Shelf Res, 2010, 30: 1840-1853[33]Kline J B, Moore D J, Clevenger C V. Activation and association of the Tec tyrosine kinase with the human prolactin receptor: mapping of a Tec/Vav-receptor binding site. Mol Biol Cell, 2000, 15: 832-841[34]Wei S-P(魏世平), Liu X-F(刘晓芬), Yang S-X(杨胜先), Lü H-Y(吕海燕), Niu Y(牛远), Zhang Y-M(章元明). Comparison of various clustering methods for population structure in Chinese cultivated soybean [Glycine max (L.) Merr.] J Nanjing Agric Univ (南京农业大学学报), 2011, 34(2): 13-17 (in Chinese with English abstract)[35]Virk P S, Ford-Lloyd B V, Jackson M T, Pooni H S, Clemeno T P, Newbury H J. Predicting quantitative variation within rice germplasm using molecular markers. Heredity, 1996, 76: 296-304 [36]Pritchard J K, Stephens M, Rosenberg N A, Donnelly P. Association mapping in structured populations. Am J Hum Genet, 2000, 67: 170-181[37]Kraakman A T, Niks R E, Berg P M, Stam P, Eeuwijk F A. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 2004, 168: 435-446[38]Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341-356[39]Yao J, Wang L X, Liu L H, Zhao C P, Zheng Y L. Association mapping of agronomic traits on chromosome 2A of wheat. Genetica, 2009, 137: 67-75[40]Sears E R. The aneuploids of common wheat. Mo Agric Exp Stn Res Bull, 1954, 572: 3-58[41]Zhou M-P(周淼平), Huang Y-H(黄益洪), Ren L-J(任丽娟). Detection of QTLs for plant height in wheat using RILs. Jiangsu J Agric Sci (江苏农业科学), 2004, 20(4): 201-206 (in Chinese with English abstract) |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332. |
[3] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[4] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[5] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[6] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[7] | 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919. |
[8] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[9] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[10] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[11] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[12] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[13] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[14] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[15] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
|