欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 1018-1028.doi: 10.3724/SP.J.1006.2012.01018

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

黄淮冬麦区175个小麦品种的SSR多态性及其与株高、产量相关性状的关联分析

武玉国,吴承来,秦保平,王振林,黄玮,杨敏,尹燕枰   

  1. 作物生物学国家重点实验室 / 山东省作物生物学重点实验室 / 山东农业大学农学院, 山东泰安  271018
  • 收稿日期:2011-11-28 修回日期:2012-01-19 出版日期:2012-06-12 网络出版日期:2012-03-05
  • 通讯作者: 尹燕枰, E-mail: ypyinsdau@sina.com, Tel: 0538-8242458
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项(201203029),国家转基因生物新品种培育重大专项(2009ZX08002-004B)和国家重点基础研究计划(973计划)项目(2009CB118602)资助。

Diversity of SSR Marker in 175 Wheat Varieties from Huang-Huai Winter Wheat Region and Its Association with Plant Height and Yield Related Traits

WU Yu-Guo,WU Cheng-Lai,QIN Bao-Ping,WANG Zhen-Lin,HUANG Wei,YANG Min,YIN Yan-Ping*   

  1. State Key Laboratory of Crop Biology / Shandong Provincial Key Laboratory of Crop Biology / Agronomy College of Shandong Agricultural University, Tai’an 271018, China
  • Received:2011-11-28 Revised:2012-01-19 Published:2012-06-12 Published online:2012-03-05
  • Contact: 尹燕枰, E-mail: ypyinsdau@sina.com, Tel: 0538-8242458

摘要: 为了解小麦品种资源的遗传多样性, 筛选株高、产量相关性状相关标记的等位变异, 选用108对覆盖小麦各同源染色体且多态性高的SSR引物, 对黄淮麦区175个小麦品种进行分析。共检测到448个等位变异, 平均每个标记4.15个等位变异, 变化范围为2~14个;全部SSR位点的多态性信息含量(PIC)变化范围为0.075~0.869, 平均为0.561。聚类分析显示同一地区或同一育种单位育成的、具有共同亲本的品种多数聚为一类。关联分析表明, 与株高、产量相关性状显著关联(P<0.01)的标记有23个, 其中3个标记达到极显著(P<0.001)水平。标记wmc128(1B)和wmc236(3B)与小穗数极显著相关, 分别解释小穗数变异的10.5%和8.0%标记Xgwm129(2B)与千粒重达到极显著相关, 可以解释千粒重变异的19.3%

关键词: 小麦, 遗传多样性, SSR, 等位变异, 关联分析

Abstract: To make advances in wheat breeding, it is important to study germplasm diversity of Huang-huai winter wheat, and identify SSR markers associated with important agronomic traits, including plant heightand yield related traits. In this study, we selected 175 historical winter wheat varieties planted in Huang-Huai winter wheatarea and 108 pairs of SSR markers evenly distributed on the chromosomes of wheat to reveal the genetic diversity. A total of 448 alleles of loci were detected in the experimental varieties. The average alleles per locus were 4.15, which varied from 2 to 14. Thepolymorphism information content (PIC) value ranged from 0.075 to 0.869, with an average of 0.560. Cluster analysis showed that most of the varieties with the common parents, bred by the same breeders and planted in the same area were clustered together. A total of 23 were markers significantly (P<0.01) associated with plant height and yield related traits, among which threewere very significantly(P<0.001) associated with the traits.The markerswmc128 (1B) and wmc236 (3B) could explain 10.5% and 8.0% of variation in the number of spikelets(P<0.001), respectively.And, Xgwm129 (2B) was significantly (P<0.001) associated with 1000- kernel weight, whose phenotypic variation explaining rate was as high as 19.3%.

Key words: Wheat, Genetic diversity, SSR, Allele, Association analysis

[1]Zhang X-Y(张学勇), Tong Y-P(童依平), You G-X(游光霞), Hao C-Y(郝晨阳), Ge H-M(盖红梅), Wang L-F(王兰芬), Li B(李滨), Dong Y-C(董玉琛), Li Z-S(李振声). Hitchhiking effect mapping: a new approach for discovering agronomic important genes. Sci Agric Sin (中国农业科学), 2006, 39(8): 1526-1535 (in Chinese with English abstract)

[2]Salvi S, Tuberosa R. To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci, 2005, 10: 297-304

[3]Farnir F, Coppieters W, Arranz J J, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M. Extensive genome-wide linkage disequilibrium in cattle. Genome Res, 2000, 10: 220-227

[4]Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet, 1999, 22: 139-144

[5]Jorde L B. Linkage disequilibrium and the search for complex disease genes. Genome Res, 2000, 10: 1435-1444

[6]Wei T-M(魏添梅), Chang X-P(昌小平), Min D-H(闵东红), Jing R-L(景蕊莲). Analysis of genetic diversity and tapping elite alleles for plant height in drought-tolerant wheat varieties. Acta Agron Sin (作物学报), 2010, 36(6): 895-904 (in Chinese with English abstract)

[7]Maccaferri M, Sanguineti M C, Enrico N, Roberto T. Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed, 2005, 15: 271-289

[8]Flint-Garcia S A, Thuillet A C, Yu J M, Pressoir G, Romero S M, Sharon E, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler IV E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054-1064

[9]Beló A, Zheng P, Luck S, Shen B, Meyer D J, Li B, Tingey S, Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics, 2008, 279: 1-10

[10]Andersen J R, Schrag T, Melchinger A E, Zein I, Lübberstedt T. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet, 2005, 111: 206-217

[11]Ducrocq S, Madur D, Veyrieras J B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A. Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics, 2008, 178: 2433-2437

[12]Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P, Schüler, K. Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed, 2004, 13: 93-102

[13]Simko I, Costanzo S, Haynes K G, Christ B J, Jones R W. Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theor Appl Genet, 2004, 108: 217-224

[14]Zhao B(赵波), Ye J(叶剑), Jin W-L(金文林), Zeng C-W(曾潮武), Wu B-M(吴宝美), Pu S-J(濮绍京), Pan J-B(潘金豹), Wan P(万平). Analysis on genetic diversity and trait association of different types of azuki bean (Vigna angularisi) by SSR markers. Sci Agric Sin (中国农业科学). 2011, 44(4): 673-682 (in Chinese with English abstract)

[15]Skøt L, Humphreys M O, Armstead I, Heywood S, Skøt K P. An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.). Mol Breed, 2005, 15: 233-245

[16]Eizonga G C, Agrama H A, Lee F N, Yan W, Jia Y. Identifying novel resistance genes in newly introduced blast resistant rice germplasm. Crop Sci, 2006, 46: 1870-1878

[17]Sabharwal V, Negi M S, Banga S S, Lakshmikumaran M. Mapping of AFLP markers linked to seed coat colour loci in Brassica juncea (L.) Czern. Theor Appl Genet, 2004, 109: 160-166

[18]Li X-J(李小军), Xu X(徐鑫), Liu W-H(刘伟华), Li X-Q(李秀全), Li L-H(李立会). Genetic diversity of the founder parent Orofen and its progenies revealed by SSR markers. Sci Agric Sin (中国农业科学), 2009, 42(10): 3397-3404 (in Chinese with English abstract)

[19]Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acids Res, 1991, 19: 1349

[20]Wang L-X(王立新), Zhao C-P(赵昌平), Qiu J(邱军), Li H-B(李宏博), Ge L-L(葛玲玲), Sun J(孙辉), Yao J(姚骥). A new scoring method of SSR patterns for wheat. J Triticeae Crops (麦类作物学报). 2006, 26(4): 164-168 (in Chinese with English abstract)

[21]Liu K J, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129

[22]Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959

[23]Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165-1177

[24]Edward Buckler Laboratory. Maize Diversity Research. [2007-01-30] http://www.maize genetics. net/bioinformatics/tassel

[25]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611-2620

[26]Li Z-K(李卓坤), Xie Q-G(谢全刚), Zhu Z-L(朱占玲), Liu J-L(刘金良), Han S-X(韩淑晓), Tian B(田宾), Yuan Q-Q(袁倩倩), Tian J-C(田纪春). Analysis of plant height heterosis based on QTL mapping in wheat. Acta Agron Sin (作物学报), 2010, 36(5): 771-778 (in Chinese with English abstract)

[27]Zhang K-P(张坤普), Xu X-B(徐献斌), Tian J-C(田纪春). QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin (作物学报), 2009, 35(2): 270-278 (in Chinese with English abstract)

[28]Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol, 2005, 57: 461-485

[29]Chen X-M(陈新民), He Z-H(何中虎), Shi J-R(史建荣), Xia L-Q(夏兰芹), Ward R, Zhou Y(周阳), Jiang G-L(蒋国梁). Genetic diversity of high quality winter wheat varieties (lines) based on SSR markers. Acta Agron Sin (作物学报), 2003, 29(1): 13-19 (in Chinese with English abstract)

[30]Zwart R S, Muylle H, Van Boekstaele E V, Roldán-Ruiz I. Evaluation of genetic diversity of Fusarium head blight resistance in European winter wheat. Theor Appl Genet, 2008, 117: 813-828

[31]Hao C-Y(郝晨阳), Dong Y-C(董玉深), Wang L-F(王兰芬), You G-X(游光霞), Zhang H-N(张洪娜), Ge H-M(盖红梅), Jia J-Z(贾继增), Zhang X-Y(张学勇). The construction of common wheat core germplasm and analysis of genetic diversity in our country. Sci Bull (科学通报), 2008, 53(8): 908-915 (in Chinese)

[32]Harris B P, Stokesbury K D E. The spatial structure of local surficial sediment characteristics on Georges Bank, USA. Continental Shelf Res, 2010, 30: 1840-1853

[33]Kline J B, Moore D J, Clevenger C V. Activation and association of the Tec tyrosine kinase with the human prolactin receptor: mapping of a Tec/Vav-receptor binding site. Mol Biol Cell, 2000, 15: 832-841

[34]Wei S-P(魏世平), Liu X-F(刘晓芬), Yang S-X(杨胜先), Lü H-Y(吕海燕), Niu Y(牛远), Zhang Y-M(章元明). Comparison of various clustering methods for population structure in Chinese cultivated soybean [Glycine max (L.) Merr.] J Nanjing Agric Univ (南京农业大学学报), 2011, 34(2): 13-17 (in Chinese with English abstract)

[35]Virk P S, Ford-Lloyd B V, Jackson M T, Pooni H S, Clemeno T P, Newbury H J. Predicting quantitative variation within rice germplasm using molecular markers. Heredity, 1996, 76: 296-304

[36]Pritchard J K, Stephens M, Rosenberg N A, Donnelly P. Association mapping in structured populations. Am J Hum Genet, 2000, 67: 170-181

[37]Kraakman A T, Niks R E, Berg P M, Stam P, Eeuwijk F A. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 2004, 168: 435-446

[38]Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341-356

[39]Yao J, Wang L X, Liu L H, Zhao C P, Zheng Y L. Association mapping of agronomic traits on chromosome 2A of wheat. Genetica, 2009, 137: 67-75

[40]Sears E R. The aneuploids of common wheat. Mo Agric Exp Stn Res Bull, 1954, 572: 3-58

[41]Zhou M-P(周淼平), Huang Y-H(黄益洪), Ren L-J(任丽娟). Detection of QTLs for plant height in wheat using RILs. Jiangsu J Agric Sci (江苏农业科学), 2004, 20(4): 201-206 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[3] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[4] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[5] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[6] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[7] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[8] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[9] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[10] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[11] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[12] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[13] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[14] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!