欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (08): 1491-1496.doi: 10.3724/SP.J.1006.2011.01491

• 研究简报 • 上一篇    下一篇

对人工合成小麦的微卫星变异分析

王变银,翟军,郝元峰,李安飞,孔令让   

  1. 山东农业大学农学院 / 作物生物学国家重点实验室 / 山东省作物生物学重点实验室  山东泰安271018
  • 收稿日期:2011-01-12 修回日期:2011-04-26 出版日期:2011-08-12 网络出版日期:2011-06-13
  • 通讯作者: 孔令让, E-mail: lkong@sdau.edu.cn, Tel: 0538-8249278
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118301)和国家自然科学基金项目(31071405)资助。

Microsatellite Variation in Synthetic Hexaploid Wheat

WANG Bian-Yin,ZHAI Jun,HAO Yuan-Feng,LI An-Fei,KONG Ling-Rang*   

  1. State Key Laboratory of Crop Biology / Shandong Key Laboratory of Crop Biology / Agronomy College of Shandong Agricultural University, Tai’an 271018, China
  • Received:2011-01-12 Revised:2011-04-26 Published:2011-08-12 Published online:2011-06-13
  • Contact: 孔令让, E-mail: lkong@sdau.edu.cn, Tel: 0538-8249278

摘要: 比较分析了同一四倍体小麦Langdon与5个不同粗山羊草在合成六倍体小麦前后A、B、D染色体组不同染色体上的微卫星变异, 旨在通过分析异源多倍化引起的微卫星位点和序列变异以期探讨异源多倍体的进化机制。在所检测的位于A、B染色体组上各125个特异微卫星(G-SSR)标记中,分别有5个(4.0%)和6个(4.8%)位点发生变异;而在76个A/B染色体组上的表达序列标签微卫星(EST-SSR)标记中,只有2个(2.6%)发生了变异,比A、B染色体组G-SSR变异频率小,说明功能基因区的变异小于重复序列非编码区。在D染色体组上的103个G-SSR标记中,3个位点(2.9%)发生了序列变化。对表现差异的微卫星位点序列分析发现,人工合成小麦中多倍化引起的微卫星序列变异主要表现为简单序列重复单元次数的增加或减少;发生消除的微卫星序列比普通的微卫星序列更易发生不同类型的序列改变。微卫星序列在异源多倍化过程中对新物种基因组的形成可能起到重要的调节作用。

关键词: 合成六倍体小麦, 粗山羊草, 微卫星标记, 微卫星序列变异, 异源多倍化

Abstract: Microsatellites or simple sequence repeats (SSR) are ubiquitous in organism genomes. Investigation on the SSR variations induced by allopolyploidization is useful to understand the evolution of allopolyploid.In this study, we compared SSR loci using primers specific to A, B, and D genomes in five synthesized hexaploid wheat between tetraploid wheat Langdon and five accessions of Aegilops tauschii. The results showed that 4.0% (5 out of 125) and 4.8% (6 of 125) genomic SSRs on A and B genomes exhibited variations, respectively. A low frequency (2.6%) of variations was observed in the expressed sequence tag (EST)-SSRs located on A/B genomes. This indicated that lower variation existed in functional genes than in non-coding regions, i.e. genomic SSR. In addition, 2.9% (3 of 103) genomic SSRs on D genome showed variations. Sequence analyses indicated that the length of SSRs was mainly due to the variation of the number of repeated units. The microsatellitesequences with disappearance may be more likely to be changed than the ordinary microsatellite sequences.The ubiquitous microsatellites may play an important buffering role to achieve genome stability and plasticity inpolyploidy evolution.

Key words: Synthetic wheat, Ae. tauschii, Microsatellite, Sequence variation, Allopolyploidization

[1]Wendel J F. Genome evolution in polyploids. Plant Mol Biol, 2000, 42: 225–249
[2]Feuillet C, Langridge P, Waugh R. Cereal breeding takes a walk on the wild side. TrendsGenet, 2008, 24: 24–32
[3]Kong L-R(孔令让), Dong Y-C(董玉琛). Studies on the cytogenetics of progenies between Triticum aestivum L. and amphidiploid from Triticum durum–Ae. tauschii. Acta Agron Sin (作物学报), 1997, 23(4): 505–508 (in Chinese)
[4]Hu Y-K(胡英考), Xin Z-Y(辛志勇), Chen X(陈孝), Zhang Z-Y(张增艳), Duan X-Y(段霞瑜). Genetic analysis and gene deduction of powdery milder resistance in T. durum–Ae. tauschii amphidiploids. Acta Genet Sin (遗传学报), 2001, 28(2): 152–157 (in Chinese with English abstract)
[5]Nie L H, Han Z F, Lu L H, Yao Y Y, Sun Q X, Ni Z F. Genomic and genic sequence variation in synthetic hexaploid wheat (AABBDD) as compared to their parental species. Prog Nat Sci, 2008, 18: 533–538
[6]Feldman M, Levy A A. Allopolyploidy-ashaping force in the evolution of wheat genomes. Cytogenet Genome Res, 2005, 109: 250–258
[7]Sourdille P, Tavaud M, Charmet G, Bernard M. Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet, 2001, 103: 346–352
[8]Zhang L Q, Liu D C, Yan Z H, Lan X J, ZhengY L, Zhou Y H. Rapid changes of microsatellite flanking sequence in the allopolyp1oidization of new synthesized hexaploid wheat. Sci China Ser C, 2004, 47: 553–561
[9]Zhang L Q, Sun G L, Yan Z H, Chen Q J, Yuan Z W, Lan X J, Zheng Y L, Liu D C. Comparison of newly synthetic hexaploid wheat with its donors on SSR products. J Genet Genomics, 2007, 34: 939–946
[10]Tang Z X, Fu S L, Ren Z L, Zou Y T. Rapid evolution of simple sequence repeat induced by allopolyploidization. J Mol Evol, 2009, 69: 217–228
[11]Friesen T L, Xu S S, Harris M O. Stem rust, tan spot, Stagonospora nodorum blotch and Hessian fly resistance in Langdon Durum–Aegilops tauschii synthetic hexaploid wheat lines. Crop Sci, 2008, 48: 1062–1070
[12]Kong L, Cambron S E, Ohm H W. Hessian fly resistance genes H16 and H17 are mapped to a resistance gene cluster in the distal region of chromosome 1AS in wheat. Mol Breed, 2008, 21: 183–194
[13]Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P. High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet, 2005, 111: 677–687
[14]Yu J K, Dake T M, Singh S, Benscher D, Li W L, Gill B, Sorrells M E. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004, 47: 805–818
[15]Chen H M, Li L Z, Wei X Y, Li S S, Lei T D, Hu H Z, Wang H G, Zhang X S . Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chin Sci Bull, 2005, 50: 2328–2336
[16]Peng J H, Lapitan N L V. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics, 2005, 5: 80–96
[17]Zhang X L, Shen X R, Hao Y F, Cai J J, Ohm H W, Kong L R. A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theor Appl Genet, 2010, 122: 263–270
[18]Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl Acids Res, 1984, 12: 4127– 4138
[19]Zhivotovsky L A, Rosenberg N A, Feldman M W. Features of evolution and expansion of modern humans, inferred from genome-wide microsatellite markers. Aln J Hum Genet, 2003, 72: 1171
[20]Balloux F, Brunner H, Lugon-Moulin N. Microsatellites can be misleading: an empirical and simulation study. Evolution, 2000, 54: 1414–1422
[21]Saveliev A, Everett C, Sharpe T. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature, 2003, 422: 909–913
[22]Ohta T, Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res, 1973, 22: 201–204
[23]Ellegren H. Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet, 2000, 16: 551–558
[24]Gao L Z, Zhang C H, Chang L P. Microsatellite diversity within Oryza sativa with emphasis on indica–japonoca divergence. Gnenet Res, 2005, 85: 1–14
[25]Dietrich W F. A comprehensive genetic map of the mouse genome. Nature, 1996, 380: 149–152
[26]Liu W H, Nie H, Wang S B. Mapping a resistance gene in wheat cultivar Yangfu 9311 to yellow mosaic virus, using microsatellite markers. Theor Appl Genet, 2005, 111: 651–706
[27]Hao C-Y(郝晨阳), Wang L-F(王兰芬), Zhang X-Y(张学勇), You G-X(游光霞), Dong Y-C(董玉琛), Jia J-Z(贾继增), Liu X(刘旭), Shang X-W (尚勋武), Liu S-C(刘三才), Cao Y-S(曹永生). The variations of genetic diversity in Chinese wheat cultivars. Sci China Ser C (中国科学?C辑), 2005, 35(5): 408–415 (in Chinese)
[28]Hao C-Y(郝晨阳), Dong Y-C(董玉琛), Wang L-F(王兰芬), You G-X(游光霞), Zhang H-N(张洪娜), Ge H-M(盖红梅), Jia J-Z(贾继增), Zhang X-Y(张学勇). The construction and genetic diversity of Chinese common wheat core germplasm. Chin Sci Bull (科学通报), 2008, 53(8): 908–915 (in Chinese)
[29]Mestiri I, Chagué V, Tanguy A M, Huneau C, Huteau V, Harry B, Coriton O, Chalhoub B, Jahier J. Newly synthesized wheat allohexaploids display progenitor-dependant meiotic stability and aneuploidy but structural genomic additivity. New Phytol, 2010, 186: 86–101
[30]King D G. Evolutionary tuning knobs. Endeavor, 1997, 21: 36–40.
[31]Verstrepen K J. Intragenic tandem repeats generate functional variability. Nat Genet, 2005, 37: 986–990
[32]Vinces M D. Unstable tandem repeats in promoters confer transcriptional evolvability. Science, 2009, 324: 1213–1216
[33]Li Y C, Abraham B K, Tzion F, Eviatar N. SSR structure, function, and evolution within genes. Mol Biol Evol, 2004, 21: 991–1007
[34]Yechezkel K, David G K. Simple sequence repeats as advantageous mutators in evolution. Trends Genet, 2006, 22: 253–259
[35]Sung W, Abraham T, Bergeron R D, Michael L, Thomas W K. Simple sequence repeat variation in the Daphnia pulex genome. BMC Genomics, 2010, 11: 691
[36]Liu B, Vega J M, Segal G. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops: I. Changes in low-copy non-coding DNA sequences. Genome, 1998, 41: 272–277
[37]Liu B, Vega J M, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops: II. Changes in low-copy coding DNA sequences. Genome, 1998, 41: 535–542
[38]Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics, 2002, 160: 1651–1659
[39]Shaked H, Kashkush K, Ozkan H, Feldman M, Levy A A. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell, 2001, 13:1749–1759
[1] 乔麟轶,李欣,畅志坚,张晓军,詹海仙,郭慧娟,李建波,常建忠,郑军. 粗山羊草全基因组Aux/IAA基因家族的分离、染色体定位及序列分析[J]. 作物学报, 2014, 40(12): 2059-2069.
[2] 贺梁琼,熊发前,唐秀梅,蒋菁,韩柱强,钟瑞春,高忠奎,李忠,何新华,唐荣华. 花生属人工异源多倍体进化早期基因表达变化的cDNA-SCoT分析[J]. 作物学报, 2014, 40(10): 1767-1775.
[3] 韩建东,李伟华,曹远银,宫志远,姚强. 小麦抗秆锈病基因Sr33的微卫星标记[J]. 作物学报, 2012, 38(06): 1003-1008.
[4] 张媛媛, 束爱萍, 张立娜, 曹桂兰, 韩龙植. 中国不同省份籼稻地方品种的遗传结构分析[J]. 作物学报, 2011, 37(12): 2173-2178.
[5] 邵菁, 戴伟民, 张连举, 宋小玲, 强胜. 江苏省杂草稻遗传多样性及其起源分析[J]. 作物学报, 2011, 37(08): 1324-1332.
[6] 张强, 姚国新, 胡广隆, 汤波, 陈超, 李自超. 利用极端材料定位水稻粒形性状数量基因位点[J]. 作物学报, 2011, 37(05): 784-792.
[7] 朱西平,李鑫,李雅轩,晏月明. 普通小麦及近缘粗山羊草α-醇溶蛋白基因的克降、定位与进化分析[J]. 作物学报, 2010, 36(4): 580-589.
[8] 吴承来, 张倩倩, 董炳雪, 张春庆. 我国部分玉米自交系遗传关系和遗传结构解析[J]. 作物学报, 2010, 36(11): 1820-1831.
[9] 余渝,张艳欣,林忠旭,张献龙. 棉花种间BC1群体偏分离的遗传剖析[J]. 作物学报, 2010, 36(10): 1657-1665.
[10] 苏亚蕊,张大乐,张明,李锁平. 黄河中游粗山羊草三种y-型高分子量谷蛋白亚基的鉴定、克隆及系统进化分析[J]. 作物学报, 2009, 35(7): 1244-1252.
[11] 张培培,王夏青,余杨,余渝,林忠旭,张献龙. 首批海岛棉基因组来源的微卫星标记的分离、评价和定位[J]. 作物学报, 2009, 35(6): 1013-1020.
[12] 秦君;李英慧;刘章雄;栾维江;闫哲;关荣霞;张孟臣;常汝镇;李广敏;马峙英;邱丽娟. 黑龙江省大豆遗传结构及遗传多样性分析[J]. 作物学报, 2009, 35(2): 228-238.
[13] 祁栋灵;郭桂珍;李明哲;杨春刚;张俊国;曹桂兰;张三元. 碱胁迫下粳稻幼苗前期耐碱性的数量性状基因座检测[J]. 作物学报, 2009, 35(2): 301-308.
[14] 廖祥政;王瑾;周荣华;任正隆;贾继增. 发掘人工合成小麦中千粒重QTL的有利等位基因[J]. 作物学报, 2008, 34(11): 1877-1884.
[15] 张媛媛;曹桂兰;韩龙植. 中国不同地理来源籼稻地方品种的亲缘关系研究[J]. 作物学报, 2007, 33(05): 757-762.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!