欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (08): 1485-1490.doi: 10.3724/SP.J.1006.2011.01485

• 研究简报 • 上一篇    下一篇

华北平原主要作物生产的碳效率研究初报

史磊刚,范士超,孔凡磊,陈阜*   

  1. 中国农业大学农学与生物技术学院 / 农业部农作制度重点开放实验室,北京100193
  • 收稿日期:2011-01-24 修回日期:2011-04-27 出版日期:2011-08-12 网络出版日期:2011-06-13
  • 通讯作者: 陈阜, E-mail: chenfu@cau.edu.cn, Tel:010-62733316
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2010CB951502)和国家公益性行业(农业)科研专项(200903003)资助。

Preliminary Study on the Carbon Efficiency of Main Crops Production in North China Plain

SHI Lei-Gang,FAN Shi-Chao,KONG Fan-Lei,CHEN Fu   

  1. College of Agronomy and Biotechnology, China Agricultural University / Key Laboratory of Farming System, Ministry of Agriculture, Beijing 100193, China
  • Received:2011-01-24 Revised:2011-04-27 Published:2011-08-12 Published online:2011-06-13
  • Contact: 陈阜, E-mail: chenfu@cau.edu.cn, Tel:010-62733316

摘要: 提高农作物生产的碳效率是实现低碳农业的重要途径之一。为探明农业生产中的碳效率,本文以河北吴桥县为例,基于农户生产调查数据,利用投入产出法,对华北平原冬小麦、夏玉米和棉花3种主要作物生产的碳投入、碳产出和碳效率进行了评价。结果表明,冬小麦、夏玉米和棉花生产的碳投入总量分别为943.47±225.14、525.74±134.73和513.60±138.94 kg CE km-2,其中化肥和电能占总量的大部分,分别约占60%和25%。3种作物碳的产出总量分别为8 430.70±774.45、7 194.50± 754.58和5 486.00±547.69 kg CE hm-2,其中秸秆约占总量的50%,经济产量约占34%,根约占17%。冬小麦、夏玉米和棉花碳的生产效率分别为7.95±2.55、15.90±4.34和7.60±2.92 kg kg-1 CE,碳的经济效率分别为13.28±4.56、21.47±5.86和76.70±29.45 CHY kg-1 CE,碳的生态效率分别为9.59±3.07、14.57±3.98和11.69±4.49 kg C kg-1 CE,作物间的碳效率差异显著,初步表明在华北平原,夏玉米生产的碳综合效率最高,棉花次之,冬小麦最低。

关键词: 华北平原, 冬小麦, 夏玉米, 棉花, 碳效率, 低碳农业

Abstract: Improving the carbon efficiency of crop production is one of the important ways to realize the low-carbon agriculture. In order to get a clear understanding of carbon efficiency in agricultural production, this paper, based on the investigation data of the farmer’s production, applying input and output calculation method, evaluated the carbon input, carbon output and carbon efficiency in production of the three major crops, winter wheat, summer maize and cotton, in Wuqiao County of Hebei Province in North China Plain. The results were as follows:the carbon input of winter wheat, summer maize and cotton was 943.47±225.14, 525.74±134.73, and 513.60±138.94 kg CE ha-1, of which fertilizers and electricity accounted for a majority, about 60% and 25% respectively. The carbon output of the three major crops was 8 430.70±774.45, 7 194.50±754.58, and 5 486.00±547.69 kg CE ha-1 respectively, of which straw accounted for 50%, economic yield accounted for 34%, and root accounted for 17%. The carbon production efficiency of winter wheat, summer maize and cotton was 7.95±2.55, 15.90±4.34, and 7.60±2.92 kg kg-1 CE, respectively. The carbon economic efficiency of the three crops was 13.28±4.56, 21.47±5.86, and 76.70±29.45 CHY kg-1 CE, respectively.The carbon ecological efficiency of the three crops was 9.59±3.07, 14.57±3.98, and 11.69±4.49 kg C kg-1 CE, respectively. There were significant differences in the carbon efficiency of the three major crops. Preliminary results showed that the carbon integrated efficiency of summer maize was the highest, followed by cotton, which in turn had higher the efficiency than winter wheat in North China Plain.

Key words: North China Plain, Winter wheat, Summer maize, Cotton, Carbon efficiency, Low-carbon agriculture

[1]Xie G-D(谢高地), Qi W-H(齐文虎), Zhang Y-S(章予舒), Leng Y-F(冷允法). A study on utilization efficiency of main agriculture resources. Resour Sci (资源科学), 1998, 20(5): 7–11 (in Chinese with English abstract)
[2]Jin J(靳京), Wu S-H(吴绍洪), Dai E-F(戴尔阜). Assessment on agricultural resources efficiency: comparison on methods and integrated approaches. Resour Sci (资源科学), 2005, 27(1): 146–152 (in Chinese with English abstract)
[3]Lal R. Carbon emission from farm operations. Environ Int, 2004, 30: 981–990
[4]Canadell J G, Le Quere C, Raupach M R, Field C B, Buitenhuis E T, Ciais P, Conway T J, Gillett N P, Houghton R A, Marland G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA, 2007, 104: 18866–18870
[5]Shi Y-L(石玉林), Feng Z-M(封志明). Developing the study of high efficient utilization of agricultural resources. J Nat Resour (自然资源学报), 1997, 12(4): 293–298 (in Chinese with English abstract)
[6]Fu X-L(付雪丽), Zhang H(张惠), Jia J-Z(贾继增), Du L-F(杜立丰), Fu J-D(付金东), Zhao M(赵明). Yield performance and resources use efficiency of winter wheat and summer maize in double late-cropping system. Acta Agron Sin (作物学报), 2009, 35(9): 1708–1714 (in Chinese with English abstract)
[7]Burney J A, Davis S J, Lobell D B. Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci USA, 2010, 107: 12052–12057
[8]Mrini M, Senhaji F, Pimentel D. Energy analysis of sugar beet production under traditional and intensive farming systems and impacts on sustainable agriculture in Morocco. J Sustainable Agric, 2002, 20: 5–28
[9]Dubey A, Lal R. Carbon footprint and sustainability of agricultural production systems in Punjab, India and Ohio, USA. J Crop Improvement, 2009, 23: 332–350
[10]Han B(韩冰), Wang X-K(王效科), Lu F(逯非), Duan X-N(段晓男), Ou-Yang Z-Y(欧阳志云). Researches on the greenhouse gas leakage and net mitigation potentials of soil carbon sequestration measures in croplands. Acta Ecol Sin (生态学报), 2009, 29(9): 4494–5006 (in Chinese with English abstract)
[11]Li J-J(李洁静), Pan G-X(潘根兴), Zhang X-H(张旭辉), Fei Q-H(费庆华), Li Z-P(李志鹏), Zhou P(周萍), Zhen J-F(郑聚锋), Qiu D-S(邱多生). An evaluation of net carbon sink effect and cost/benefits of a rice-rape rotation ecosystem under long-term fertilization from Tai Lake region of China. Chin J Appl Ecol (应用生态学报), 2009, 20(7): 1664–1670 (in Chinese with English abstract)
[12]Li J-J(李洁静), Pan G-X(潘根兴), Li L-Q(李恋卿), Zhang X-H(张旭辉). Estimation of net carbon balance and benefits of rice-rice cropping farm of a red earth paddy under long term fertilization experiment from Jiangxi, China. J Agro-Environ Sci (农业环境科学学报), 2009(12): 2520–2525 (in Chinese with English abstract)
[13]Lu F(逯非), Wang X-K(王效科), Han B(韩冰), Ouyang Z-Y(欧阳志云), Duan X-N(段晓男), Zheng H(郑华). Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China’s cropland soil. Chin J App Ecol (应用生态学报), 2008, 19(10): 2239–2250 (in Chinese with English abstract)
[14]Xia D-J(夏德建), Ren Y-F(任玉珑), Shi L-F(史乐峰). Measurement of life-cycle carbon equivalent emissions of coal-energy chain. Stat Res (统计研究), 2010, 27(8): 82–89 (in Chinese with English abstract)
[15]West T O, Marland G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agric Ecosyst Environ, 2002, 91: 217–232
[16]Fang J Y, Guo Z D, Pu S L, Chen A P. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci China (Ser D: Earth Sci), 2007, 50(9): 1341–1350
[17]The Prices Division of National Development and Reform Commission (国家发展和改革委员会价格司). Data Compilation of the National Agricultural Costs and Returns (全国农产品成本收益资料汇编). Beijing: China Statistics Press, 2009. pp 119–163 (in Chinese)
[18]Zhang Z-F(张智峰), Zhang W-F(张卫峰). The situation and trend of fertilizer application in China. Phosphate & Compound Fertilizer (磷肥与复肥), 2008, 23(6): 9–12 (in Chinese with English abstract)
[19]Luo Q-Y(罗其友), Tang H-J(唐华俊), Jang W-L(姜文来). Strategies of high efficient and sustainable allocation of water and land resources for agricultural purposes. Resour Sci (资源科学), 2001, 23(2): 42–45 (in Chinese with English abstract)
[20]Han L-J(韩鲁佳), Yan Q-J(闫巧娟), Liu X-Y(刘向阳), Hu J-Y(胡金有). Straw resources and their utilization in China. Trans CSAE (农业工程学报), 2002, 18(3): 87–91 (in Chinese with English abstract)
[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[6] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[7] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[8] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[11] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[12] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[13] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[14] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[15] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!