欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1642-1648.doi: 10.3724/SP.J.1006.2010.01642

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用SRAP标记构建18个木薯品种的DNA指纹图谱

齐兰1,2,王文泉3,张振文1,叶剑秋1,李开绵1,*   

  1. 1 中国热带农业科学院热带作物品种资源研究所,海南儋州 5717372 海南大学农学院,海南儋州 571737;3 中国热带农业科学院热带生物技术研究所,海南海口 571101
  • 收稿日期:2010-03-23 修回日期:2010-05-30 出版日期:2010-10-12 网络出版日期:2010-08-04
  • 通讯作者: 李开绵, E-mail: likaimian@sohu.com
  • 基金资助:

    本研究受国家木薯现代农业产业技术体系项目(nycytx-17),国家公益性行业科研专项(3-57),国家重点技术研究发展计划(973计划)项目(2010CB126606)和中国农业科学院品种资源研究所研究生科研基金项目(YJS-2008-S009)的资助。

DNA Fingerprinting Analysis of 18 Cassava Varieties Using Sequence-Related Amplified Polymorphism Markers

JI  Lan1,2,WANG Wen-Quan3,ZHANG Zhen-Wen1,YE Jian-Qiu1,LI  Kai-Mian1*   

  1. 1 Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China; 2 Hainan University, Danzhou 571737, China; 3 Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
  • Received:2010-03-23 Revised:2010-05-30 Published:2010-10-12 Published online:2010-08-04
  • Contact: LI Kai-Mian,E-mail:likaimian@sohu.com

摘要: 利用SRAP标记,选用36对多态性较好的引物组合,对18个木薯品种进行分析鉴定,扩增出320个位点,其中多态性位点235个,多态性比率达73.4%,平均每对引物组合可产生8.9个位点和6.5个多态性位点;235个多态性位点采用非加权组平均法(UPGMA)进行聚类分析,以遗传相似系数0.734为阈值,可将18份供试材料分为4组;选用2对多态性引物Me1-Em5和Me24-Em10,初步构建了18份木薯品种的指纹图谱,根据条带的有无转换为0、1二进制编码形成数字指纹,每个品种拥有唯一的数字指纹区别于其他品种,置信概率达到99.999%。结果表明,采用SRAP标记建立的指纹图谱适用于木薯品种的分类和鉴定。

关键词: 木薯, SRAP, DNA指纹图谱

Abstract: There widely exists a case of same name for more varieties or different names for one variety in cassava agriculture production, so it is difficult to identifycassava varieties on the basis of the phenotypic characters. In the paper, SRAP marker was applied to detect 18 cassava varieties, thirty-six primer combinations were selected with abundant polymorphism, a total of 320 bands were scored, 235 (73.4%) out of them were polymorphic, with an average of 8.9 bands and 6.5 polymorphic bands for each primer combination, 235 polymorphic bands then were used to develop a dendrogram with Unweighted Pair-Group Method Arithmetic Average (UPGMA), and 18 cassava varieties were divided into four major groups at the 0.734 similarity level; two primer combinations Me1-Em5 and Me24-Em10, were used to develop the DNA fingerprints for the 18 cassava varieties. The DNA fingerprints were then converted into binary codes, with 1 and 0 representing band presence and absence, respectively. In the DNA fingerprints, each of the 18 cassava varieties had its unique binary code, which distinguished varieties between each other easily, with 99.999% probability of confidence. The results demonstrated that it is feasible to distinguish varieties with DNA fingerprints established by SRAP.

Key words: Cassava, SRAP, DNA fingerprint

[1]Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455–461
[2]Gao L X, Liu N, Huang B H, Hu X. Phylogenetic analysis and genetic mapping of Chinese Hedychium using SRAP markers. Sci Hort, 2008, 117: 369–377
[3]Wu Y G, Guo Q S, He J C, Lin Y F, Luo L J, Liu G D. Genetic diversity analysis among and within populations of Pogostemon cablin from China with ISSR and SRAP markers. Biochem System Ecol, 2010, 38: 63–72
[4]Liu L J, Peng D X, Wang B. Genetic relation analysis on ramie (Boehmeria nivea L. Gaud.) inbred lines by SRAP markers. Agric Sci China, 2008, 7: 944–949
[5]Fu X P, Ning G G, Gao L P, Bao M Z. Genetic diversity of Dianthus accessions as assessed using two molecular marker systems (SRAPs and ISSRs) and morphological traits. Sci Hort, 2008, 117: 263–270
[6]Espósito M A, Martin E A, Cravero V P, Cointry E. Characterization of pea accessions by SRAP’s markers. Sci Hort, 2007, 113: 329–335
[7]Ren Y(任羽), Wang D-Y(王得元), Zhang Y-D(张银东). Sequence-related amplified polymorphism (SRAP): a novel technique for molecular marker. Chin Agric Sci Bull (中国农学通报), 2004, 20(6): 11–13 (in Chinese with English abstract)
[8]Huang J-Y(黄进勇), Gai S-P(盖树鹏), Zhang E-Y(张恩盈), Xia L-S(夏连胜). Development of SRAP fingerprinting in 19 maize hybrids. Chin Agric Sci Bull (中国农学通报), 2009, 25(18): 47–51 (in Chinese with English abstract)
[9]Sun J(孙建), Zhang Y-X(张艳欣), Che Z(车卓), Huang B(黄波), Zhang X-R(张秀荣). SRAP fingerprinting analysis of sesame (Sesamum indicum L.) cultivars in Jianghuai areas. Chin J Oil Crop Sci (中国油料作物学报), 2009, 31(1): 9–13 (in Chinese with English abstract)
[10]Wang Z Y, Yuan X J, Zheng Y Q, Liu J X. Molecular identification and genetic analysis for 24 turf-type Cynodon cultivars by sequence-related amplified polymorphism markers. Sci Hort, 2009, 122: 461–467
[11]Liu L W, Zhao L P, Gong Y Q, Wang M X, Chen L M, Yang J L, Wang Y, Yu F M, Wang L Z. DNA fingerprinting and genetic diversity analysis of late-bolting radish cultivars with RAPD, ISSR and SRAP markers. Sci Hort, 2008, 116: 240–247
[12]Qiao L X, Liu H Y, Guo B T, Weng M L, Dai J X, Duan D L, Wang B. Molecular identification of 16 Porphyra lines using sequence-related amplified polymorphism markers. Aquatic Bot, 2007, 87: 203–208
[13]Joaquim L, Carvalho C B, Schaal B A. Assessing genetic diversity in the cassava (Manihot esculenta Crantz) germplasm collection in Brazil using PCR-based markers. Euphytica, 2001, 120: 133–142
[14]Fregene M A, Suarez M, Mkumbira J, Kulembeka H, Ndedya E, Kulaya A, Mitchel S, Gullbery U, Rosling H, Dixon A G O, Dean R, Kresovich S. Simple sequence repeat marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated crop. Theor Appl Genet, 2003, 107: 1083–1093
[15]Xia Z-Q(夏志强), Zou M-L(邹枚伶), Wang W-Q(王文泉). Optimization of SRAP reaction system in cassava. Chin Agric Sci Bull (中国农学通报), 2008, 24(9): 457–460 (in Chinese with English abstract)
[16]Zhou J-G(周建国), Li K-M(李开绵), Ye J-Q(叶剑秋), Yang P-Y(杨鹏雅), Wang W-Q(王文泉). Analyses of the genetic diversity in cassava germplasm by using SRAP markers. Mod   Agric Sci (现代农业科学), 2009, 16(5): 45–47 (in Chinese with English abstract)
[17]Kidwell K K, Osborn T C. Simple Plant DNA Isolation Procedures. In: Beckman J, Osborn T C, ed. Plant Genomes: Methods for Genetic and Physical Mapping. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1992. pp 1–13
[18]Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5269–5273
[19]Wu Y-S(吴渝生), Yang W-P(杨文鹏), Zheng Y-L(郑用琏). Establishment of fingerprinting for three hybrids and their parents by SSR markers. Acta Agron Sin (作物学报), 2003, 29(4): 496–500 (in Chinese with English abstract)
[20]Chavarriaga-Aguirre P, Maya M M, Tohme J, Duque M C, Iglesias C, Bonierbale M W, Kresovich S, Kochert G. Using microsatellites, isozymes and AFLP to evaluate genetic diversity and redundancy in the cassava core collection and to assess the usefulness of DNA-based markers to maintain germplasm collections. Mol Breed, 1999, 5: 263–273
[21]Fu Y-H(付瑜华), Li J(李杰), Wang H-Y(王海燕), Yang Z-X(杨子贤), Wang W-Q(王文泉). Establishment of fingerprints for several commercial cultivars in cassava. J Plant Genet Resour (植物遗传资源学报), 2007, 8(1): 51–55 (in Chinese with English abstract)
[22]Teng H-T(滕海涛), Lü B(吕波), Zhao J-R(赵久然), Xu Y(徐岩), Wang F-G(王凤格), Du Y-Y(堵苑苑), Yang K(杨坤), Tang H(唐浩), Li X-Y(李祥羽). DNA fngerprint profile involved in plant variety protection practice. Biotechnol Bull (生物技术通报), 2009, (1): 1–6 (in Chinese with English abstract)
[1] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[2] 田红丽, 杨扬, 王璐, 王蕊, 易红梅, 许理文, 张云龙, 葛建镕, 王凤格, 赵久然. 兼容型maizeSNP384标记筛选与玉米杂交种DNA指纹图谱构建[J]. 作物学报, 2020, 46(7): 1006-1015.
[3] 李乐晨,朱国忠,苏秀娟,郭旺珍. 适于海岛棉指纹图谱构建的SNP核心位点筛选与评价[J]. 作物学报, 2019, 45(5): 647-655.
[4] 赵仁欣,李森业,郭瑞星,曾新华,文静,马朝芝,沈金雄,涂金星,傅廷栋,易斌. 利用SNP芯片构建我国冬油菜参试品种DNA指纹图谱[J]. 作物学报, 2018, 44(7): 956-965.
[5] 魏中艳, 李慧慧, 李骏, YasirA.Gamar, 马岩松, 邱丽娟. 应用SNP精准鉴定大豆种质及构建可扫描身份证[J]. 作物学报, 2018, 44(03): 315-323.
[6] 邓昌哲,姚慧,安飞飞,李开绵,陈松笔. 木薯块根有色体分离及其蛋白质组学的研究[J]. 作物学报, 2017, 43(09): 1290-1299.
[7] 于晓玲,阮孟斌,王斌,杨义伶,王树昌*,彭明*. 木薯转录因子基因MeHDZ14的克隆与分析[J]. 作物学报, 2017, 43(08): 1181-1189.
[8] 巫桂芬,徐鲜均,徐建堂,陶爱芬,张立武,魏丽真,潘漠,方平平,林荔辉,祁建民. 利用SRAP、ISSR、SSR标记绘制黄麻基因源分子指纹图谱[J]. 作物学报, 2015, 41(03): 367-377.
[9] 吕蕊花,金筱耘,赵爱春,吉洁,刘长英,李军,蒲龙,鲁成,余茂德. 果桑肥大性菌核病菌和油菜菌核病菌的交叉侵染、生物学特性及遗传关系[J]. 作物学报, 2015, 41(01): 42-48.
[10] 逯晓萍,刘丹丹,王树彦,米福贵,韩平安,吕二锁. 高丹草遗传效应与杂种表现预测模型[J]. 作物学报, 2014, 40(03): 466-475.
[11] 王茂芊,李博,王华忠. 甜菜遗传连锁图谱初步构建[J]. 作物学报, 2014, 40(02): 222-230.
[12] 吴建忠,黄文功,康庆华,赵东升,袁红梅,于莹,刘岩,姜卫东,程莉莉,宋喜霞,赵茜,吴广文,关凤芝*. 亚麻遗传连锁图谱的构建[J]. 作物学报, 2013, 39(06): 1134-1139.
[13] 黄巧义,唐拴虎,陈建生,张发宝,解开治,黄旭,蒋瑞萍,李苹. 木薯物质累积特征及其施肥效应研究[J]. 作物学报, 2013, 39(01): 126-132.
[14] 文明富,胡梅珍,陈新,王海燕,卢诚,王文泉. 八个木薯品种(系)储藏根采后耐贮性生化指标的变化[J]. 作物学报, 2013, 39(01): 172-176.
[15] 祁建民,梁景霞,陈美霞,徐建堂,牛小平,周东新,王涛,陈顺辉. 应用SRAP与ISSR分析烟草种质资源遗传多样性及遗传演化关系[J]. 作物学报, 2012, 38(08): 1425-1434.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!